Home
Class 12
MATHS
Prove that the function L(x) defined on ...

Prove that the function L(x) defined on the interval `(0,infty)` by the integral `L(x) = int_(1)^(x) (dt)/(t)` possesses the following properties.
`L(x_(1)x_(2)) = L(x_(1)) + L(x_(2))`
`L((x_(1))/(x_(2))) = L(x_(1)) - L(x_(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the properties of the function \( L(x) \) defined by the integral \[ L(x) = \int_{1}^{x} \frac{dt}{t} \] we will demonstrate the two properties step by step. ### Property 1: \( L(x_1 x_2) = L(x_1) + L(x_2) \) 1. **Start with the definition of \( L(x) \)**: \[ L(x_1 x_2) = \int_{1}^{x_1 x_2} \frac{dt}{t} \] 2. **Use the property of definite integrals**: We can split the integral from \( 1 \) to \( x_1 x_2 \) into two parts: \[ L(x_1 x_2) = \int_{1}^{x_1} \frac{dt}{t} + \int_{x_1}^{x_1 x_2} \frac{dt}{t} \] 3. **Change of variable in the second integral**: Let \( t = x_1 u \) where \( u \) goes from \( 1 \) to \( x_2 \) when \( t \) goes from \( x_1 \) to \( x_1 x_2 \). The differential \( dt = x_1 du \): \[ \int_{x_1}^{x_1 x_2} \frac{dt}{t} = \int_{1}^{x_2} \frac{x_1 du}{x_1 u} = \int_{1}^{x_2} \frac{du}{u} \] 4. **Combine the results**: Thus, we have: \[ L(x_1 x_2) = \int_{1}^{x_1} \frac{dt}{t} + \int_{1}^{x_2} \frac{du}{u} = L(x_1) + L(x_2) \] ### Property 2: \( L\left(\frac{x_1}{x_2}\right) = L(x_1) - L(x_2) \) 1. **Start with the definition of \( L(x) \)**: \[ L\left(\frac{x_1}{x_2}\right) = \int_{1}^{\frac{x_1}{x_2}} \frac{dt}{t} \] 2. **Change of variable**: Let \( t = \frac{x_1}{u} \) where \( u \) goes from \( x_2 \) to \( x_1 \) when \( t \) goes from \( 1 \) to \( \frac{x_1}{x_2} \). The differential \( dt = -\frac{x_1}{u^2} du \): \[ L\left(\frac{x_1}{x_2}\right) = \int_{x_2}^{x_1} \frac{-\frac{x_1}{u^2} du}{\frac{x_1}{u}} = \int_{x_2}^{x_1} \frac{-du}{u} \] 3. **Evaluate the integral**: This can be rewritten as: \[ L\left(\frac{x_1}{x_2}\right) = -\left(\int_{1}^{x_1} \frac{du}{u} - \int_{1}^{x_2} \frac{du}{u}\right) = L(x_1) - L(x_2) \] ### Conclusion Thus, we have proven both properties: 1. \( L(x_1 x_2) = L(x_1) + L(x_2) \) 2. \( L\left(\frac{x_1}{x_2}\right) = L(x_1) - L(x_2) \)
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6. 5 (Simplification of Integrals Based on the Properties of Symmetry of Integrands)|14 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 6 (Integration by Parts. Reduction Formulas)|22 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6.3 (Estimating an Integral. The Definite Integral as a Function of Its Limits)|17 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos
IA MARON-THE DEFINITE INTEGRAL -6 . 4 (Changing the Variable in a Definite Integral)
  1. Prove that the integral int(0)^(pi) (sin 2 k x)/(sin x) dx equal...

    Text Solution

    |

  2. Compute the integral int(1//2)^(sqrt(3//2)) (dx)/(x sqrt(1 - x^(2)))

    Text Solution

    |

  3. Prove that the function L(x) defined on the interval (0,infty) by the ...

    Text Solution

    |

  4. Transform the integral int(0)^(3) (x-2)^(2) dx by the substitution (x...

    Text Solution

    |

  5. Compute the integrals I = int(0)^(1)(dx)/(1 + sqrt(x))

    Text Solution

    |

  6. Compute the integrals I = int(0)^(5) (dx)/( 2 x + sqrt(3 x + 1))

    Text Solution

    |

  7. Compute the integrals I = int(pi//4)^(pi//3) (dx)/( 1 - sin x)

    Text Solution

    |

  8. Compute the integrals I = int(0)^(1) sqrt(2 x - x^(2)) dx

    Text Solution

    |

  9. Compute the integrals I = int(0)^(pi//4) (sin x + cos x)/( 3 + si...

    Text Solution

    |

  10. Compute the integrals I = int(0)^(a) x^(2) sqrt((a - x)/( a + x))...

    Text Solution

    |

  11. Compute the integrals I = int(0)^(2a) sqrt(2 a x - x^(2)) dx

    Text Solution

    |

  12. Compute the integrals I = int(-1)^(1) (dx)/(1 + x^(2))

    Text Solution

    |

  13. Applying a suitable change of the variable, find the following defini...

    Text Solution

    |

  14. Consider the integral int(-2)^(2) (dx)/(4 + x^(2)) . It is easy to co...

    Text Solution

    |

  15. Consider the integral I = int(0)^(2pi) (dx)/( 5 - 2 cos x) . Making th...

    Text Solution

    |

  16. Make sure that a formal change of the variable t = x^((2)/(5)) leads ...

    Text Solution

    |

  17. Is is possible to make the substitution x = sec t in the integral I = ...

    Text Solution

    |

  18. Given the integral int(0)^(1) sqrt(1 - x^(2)) dx. Made the substitut...

    Text Solution

    |

  19. Prove the equality int(-a)^(a) f(x) dx = int(0)^(a) [f(x) + f(-x)]...

    Text Solution

    |

  20. Transform the definite integral int(0)^(2 pi) f(x) cos x dx by the su...

    Text Solution

    |