Home
Class 12
MATHS
Transform the integral int(0)^(3) (x-2)^...

Transform the integral `int_(0)^(3) (x-2)^(2) dx ` by the substitution `(x - 2) = t`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{3} (x-2)^{2} \, dx \) using the substitution \( (x - 2) = t \), we will follow these steps: ### Step 1: Substitute \( (x - 2) = t \) Let \( t = x - 2 \). Then, we can express \( x \) in terms of \( t \): \[ x = t + 2 \] ### Step 2: Find \( dx \) in terms of \( dt \) Differentiating both sides with respect to \( t \): \[ dx = dt \] ### Step 3: Change the limits of integration We need to change the limits of integration according to our substitution: - When \( x = 0 \): \[ t = 0 - 2 = -2 \] - When \( x = 3 \): \[ t = 3 - 2 = 1 \] So the new limits of integration are from \( -2 \) to \( 1 \). ### Step 4: Rewrite the integral Now we can rewrite the integral in terms of \( t \): \[ \int_{0}^{3} (x-2)^{2} \, dx = \int_{-2}^{1} t^{2} \, dt \] ### Step 5: Integrate Now we will integrate \( t^{2} \): \[ \int t^{2} \, dt = \frac{t^{3}}{3} + C \] Thus, we evaluate: \[ \int_{-2}^{1} t^{2} \, dt = \left[ \frac{t^{3}}{3} \right]_{-2}^{1} \] ### Step 6: Evaluate the definite integral Now we substitute the limits: \[ = \left( \frac{1^{3}}{3} \right) - \left( \frac{(-2)^{3}}{3} \right) \] Calculating each term: \[ = \frac{1}{3} - \frac{-8}{3} = \frac{1}{3} + \frac{8}{3} = \frac{9}{3} = 3 \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{3} (x-2)^{2} \, dx = 3 \] ---
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6. 5 (Simplification of Integrals Based on the Properties of Symmetry of Integrands)|14 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 6 (Integration by Parts. Reduction Formulas)|22 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6.3 (Estimating an Integral. The Definite Integral as a Function of Its Limits)|17 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos
IA MARON-THE DEFINITE INTEGRAL -6 . 4 (Changing the Variable in a Definite Integral)
  1. Prove that the integral int(0)^(pi) (sin 2 k x)/(sin x) dx equal...

    Text Solution

    |

  2. Compute the integral int(1//2)^(sqrt(3//2)) (dx)/(x sqrt(1 - x^(2)))

    Text Solution

    |

  3. Prove that the function L(x) defined on the interval (0,infty) by the ...

    Text Solution

    |

  4. Transform the integral int(0)^(3) (x-2)^(2) dx by the substitution (x...

    Text Solution

    |

  5. Compute the integrals I = int(0)^(1)(dx)/(1 + sqrt(x))

    Text Solution

    |

  6. Compute the integrals I = int(0)^(5) (dx)/( 2 x + sqrt(3 x + 1))

    Text Solution

    |

  7. Compute the integrals I = int(pi//4)^(pi//3) (dx)/( 1 - sin x)

    Text Solution

    |

  8. Compute the integrals I = int(0)^(1) sqrt(2 x - x^(2)) dx

    Text Solution

    |

  9. Compute the integrals I = int(0)^(pi//4) (sin x + cos x)/( 3 + si...

    Text Solution

    |

  10. Compute the integrals I = int(0)^(a) x^(2) sqrt((a - x)/( a + x))...

    Text Solution

    |

  11. Compute the integrals I = int(0)^(2a) sqrt(2 a x - x^(2)) dx

    Text Solution

    |

  12. Compute the integrals I = int(-1)^(1) (dx)/(1 + x^(2))

    Text Solution

    |

  13. Applying a suitable change of the variable, find the following defini...

    Text Solution

    |

  14. Consider the integral int(-2)^(2) (dx)/(4 + x^(2)) . It is easy to co...

    Text Solution

    |

  15. Consider the integral I = int(0)^(2pi) (dx)/( 5 - 2 cos x) . Making th...

    Text Solution

    |

  16. Make sure that a formal change of the variable t = x^((2)/(5)) leads ...

    Text Solution

    |

  17. Is is possible to make the substitution x = sec t in the integral I = ...

    Text Solution

    |

  18. Given the integral int(0)^(1) sqrt(1 - x^(2)) dx. Made the substitut...

    Text Solution

    |

  19. Prove the equality int(-a)^(a) f(x) dx = int(0)^(a) [f(x) + f(-x)]...

    Text Solution

    |

  20. Transform the definite integral int(0)^(2 pi) f(x) cos x dx by the su...

    Text Solution

    |