Home
Class 12
MATHS
Compute the integral I = int(0)^(1) ("a...

Compute the integral `I = int_(0)^(1) ("arc sin x")/(sqrt(1 - x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To compute the integral \[ I = \int_{0}^{1} \frac{\arcsin x}{\sqrt{1 - x^2}} \, dx, \] we will use a substitution method. ### Step 1: Substitution Let \[ t = \arcsin x. \] Then, we differentiate both sides: \[ x = \sin t \quad \text{and} \quad dx = \cos t \, dt. \] ### Step 2: Change the limits of integration When \( x = 0 \): \[ t = \arcsin(0) = 0. \] When \( x = 1 \): \[ t = \arcsin(1) = \frac{\pi}{2}. \] So, the new limits of integration are from \( 0 \) to \( \frac{\pi}{2} \). ### Step 3: Substitute in the integral Now, we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{t}{\sqrt{1 - \sin^2 t}} \cos t \, dt. \] Since \( \sqrt{1 - \sin^2 t} = \cos t \), we have: \[ I = \int_{0}^{\frac{\pi}{2}} t \, dt. \] ### Step 4: Evaluate the integral Now, we can compute the integral: \[ I = \int_{0}^{\frac{\pi}{2}} t \, dt = \left[ \frac{t^2}{2} \right]_{0}^{\frac{\pi}{2}} = \frac{(\frac{\pi}{2})^2}{2} - \frac{0^2}{2} = \frac{\pi^2}{8}. \] ### Final Result Thus, the value of the integral is \[ I = \frac{\pi^2}{8}. \] ---
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 7 (Approximating Definite Integrals)|5 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6. 5 (Simplification of Integrals Based on the Properties of Symmetry of Integrands)|14 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

Compute the integrals : int_(0)^(1) x "arc tan x dx

Compute the integral int_(0)^(1) xe^(x) dx

Compute the integrals : int_(0)^(1) " arc tan " sqrt(x) dx

Compute the integrals I = int_(-1)^(1) (dx)/(1 + x^(2))

IA MARON-THE DEFINITE INTEGRAL -6 . 6 (Integration by Parts. Reduction Formulas)
  1. Compute the integral int (1)^(0) I n ^(3) x dx

    Text Solution

    |

  2. Compute the integral int(0)^(pi^(2)/4) sin sqrt(x) dx

    Text Solution

    |

  3. Compute the integral I = int(0)^(1) ("arc sin x")/(sqrt(1 - x^(2)))dx

    Text Solution

    |

  4. int(0)^(pi//2) x^(2) sin x " " dx=

    Text Solution

    |

  5. Compute the integral I(n) = int(0)^(a) (a^(2) - x^(2))^(n) dx , where...

    Text Solution

    |

  6. Using the result of the preceding problem obtain the following formula...

    Text Solution

    |

  7. Compute the integral H(m) = int(0)^(pi//2) sin^(m) x dx = int(0)^(p...

    Text Solution

    |

  8. Compute the integral I = int(0)^(x) x sin^(m) x dx (m is natur...

    Text Solution

    |

  9. Compute the integral I (n) = int(0)^(1) x^(m) (I n x)^(n) dx , m gt 0,...

    Text Solution

    |

  10. Compute the integral I(m,n) = int(0)^(1) x^(m) (! - x)^(n) dx , where...

    Text Solution

    |

  11. Compute the integrals : int(0)^(1) " arc tan " sqrt(x) dx

    Text Solution

    |

  12. Compute the integrals : int (x - 1)e^(-x) dx

    Text Solution

    |

  13. Compute the integrals : int(pi//4)^(pi//3) (x dx)/( sin^(2) x)

    Text Solution

    |

  14. Compute the integrals : int(0)^(1) x "arc tan x dx

    Text Solution

    |

  15. Compute the integrals : int(0)^(1) x I n (1 + x^(2)) dx

    Text Solution

    |

  16. int(0)^(pi//4) log (1+tan x) dx =?

    Text Solution

    |

  17. Compute the integrals : int (0) ^(pi//2) " sin In 2 x arc tan " ...

    Text Solution

    |

  18. Compute the integrals : int(1) ^(15) "arc tan " sqrt(sqrt(x) - 1)...

    Text Solution

    |

  19. Prove that int(0)^(1) ("arc cosx")^(n) dx = n ((pi)/(2))^(n-1) - n ...

    Text Solution

    |

  20. Prove that if f'' is continuous on [a,b] then the following formula...

    Text Solution

    |