Home
Class 12
MATHS
Compute the integrals : int(0)^(1) ...

Compute the integrals :
`int_(0)^(1) " arc tan " sqrt(x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To compute the integral \( \int_{0}^{1} \tan^{-1}(\sqrt{x}) \, dx \), we will use integration by parts. The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \tan^{-1}(\sqrt{x}) \) (which we will differentiate) - \( dv = dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now we need to find \( du \) and \( v \): - To find \( du \), we differentiate \( u \): \[ du = \frac{d}{dx}(\tan^{-1}(\sqrt{x})) \, dx = \frac{1}{1 + (\sqrt{x})^2} \cdot \frac{1}{2\sqrt{x}} \, dx = \frac{1}{2(1+x)\sqrt{x}} \, dx \] - To find \( v \), we integrate \( dv \): \[ v = \int dx = x \] ### Step 3: Apply Integration by Parts Formula Now we can apply the integration by parts formula: \[ \int_{0}^{1} \tan^{-1}(\sqrt{x}) \, dx = \left[ x \tan^{-1}(\sqrt{x}) \right]_{0}^{1} - \int_{0}^{1} x \cdot \frac{1}{2(1+x)\sqrt{x}} \, dx \] ### Step 4: Evaluate the Boundary Terms Evaluate \( \left[ x \tan^{-1}(\sqrt{x}) \right]_{0}^{1} \): - At \( x = 1 \): \[ 1 \cdot \tan^{-1}(\sqrt{1}) = 1 \cdot \tan^{-1}(1) = 1 \cdot \frac{\pi}{4} = \frac{\pi}{4} \] - At \( x = 0 \): \[ 0 \cdot \tan^{-1}(\sqrt{0}) = 0 \cdot \tan^{-1}(0) = 0 \] Thus, the boundary term evaluates to: \[ \left[ x \tan^{-1}(\sqrt{x}) \right]_{0}^{1} = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] ### Step 5: Simplify the Remaining Integral Now we need to simplify the integral: \[ -\int_{0}^{1} x \cdot \frac{1}{2(1+x)\sqrt{x}} \, dx = -\frac{1}{2} \int_{0}^{1} \frac{x}{(1+x)\sqrt{x}} \, dx \] This can be rewritten as: \[ -\frac{1}{2} \int_{0}^{1} \frac{\sqrt{x}}{1+x} \, dx \] ### Step 6: Evaluate the Integral To evaluate \( \int_{0}^{1} \frac{\sqrt{x}}{1+x} \, dx \), we can use the substitution \( x = t^2 \), which gives \( dx = 2t \, dt \): \[ \int_{0}^{1} \frac{\sqrt{x}}{1+x} \, dx = \int_{0}^{1} \frac{t}{1+t^2} \cdot 2t \, dt = 2 \int_{0}^{1} \frac{t^2}{1+t^2} \, dt \] This integral can be split as: \[ 2 \int_{0}^{1} \left( 1 - \frac{1}{1+t^2} \right) dt = 2 \left[ t - \tan^{-1}(t) \right]_{0}^{1} = 2 \left( 1 - \frac{\pi}{4} \right) = 2 - \frac{\pi}{2} \] ### Step 7: Combine Results Now substituting back, we have: \[ -\frac{1}{2} \left( 2 - \frac{\pi}{2} \right) = -1 + \frac{\pi}{4} \] ### Final Result Combining everything: \[ \int_{0}^{1} \tan^{-1}(\sqrt{x}) \, dx = \frac{\pi}{4} - \left( -1 + \frac{\pi}{4} \right) = 1 \] Thus, the final answer is: \[ \int_{0}^{1} \tan^{-1}(\sqrt{x}) \, dx = 1 \]
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 7 (Approximating Definite Integrals)|5 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6. 5 (Simplification of Integrals Based on the Properties of Symmetry of Integrands)|14 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

Compute the integrals : int_(0)^(1) x "arc tan x dx

Compute the integral int_(0)^(1) xe^(x) dx

Compute the integral I = int_(0)^(1) ("arc sin x")/(sqrt(1 - x^(2)))dx

Compute the integrals : int (x - 1)e^(-x) dx

compute the integral : int_(1)^(2) (dx)/(x)

IA MARON-THE DEFINITE INTEGRAL -6 . 6 (Integration by Parts. Reduction Formulas)
  1. Compute the integral int (1)^(0) I n ^(3) x dx

    Text Solution

    |

  2. Compute the integral int(0)^(pi^(2)/4) sin sqrt(x) dx

    Text Solution

    |

  3. Compute the integral I = int(0)^(1) ("arc sin x")/(sqrt(1 - x^(2)))dx

    Text Solution

    |

  4. int(0)^(pi//2) x^(2) sin x " " dx=

    Text Solution

    |

  5. Compute the integral I(n) = int(0)^(a) (a^(2) - x^(2))^(n) dx , where...

    Text Solution

    |

  6. Using the result of the preceding problem obtain the following formula...

    Text Solution

    |

  7. Compute the integral H(m) = int(0)^(pi//2) sin^(m) x dx = int(0)^(p...

    Text Solution

    |

  8. Compute the integral I = int(0)^(x) x sin^(m) x dx (m is natur...

    Text Solution

    |

  9. Compute the integral I (n) = int(0)^(1) x^(m) (I n x)^(n) dx , m gt 0,...

    Text Solution

    |

  10. Compute the integral I(m,n) = int(0)^(1) x^(m) (! - x)^(n) dx , where...

    Text Solution

    |

  11. Compute the integrals : int(0)^(1) " arc tan " sqrt(x) dx

    Text Solution

    |

  12. Compute the integrals : int (x - 1)e^(-x) dx

    Text Solution

    |

  13. Compute the integrals : int(pi//4)^(pi//3) (x dx)/( sin^(2) x)

    Text Solution

    |

  14. Compute the integrals : int(0)^(1) x "arc tan x dx

    Text Solution

    |

  15. Compute the integrals : int(0)^(1) x I n (1 + x^(2)) dx

    Text Solution

    |

  16. int(0)^(pi//4) log (1+tan x) dx =?

    Text Solution

    |

  17. Compute the integrals : int (0) ^(pi//2) " sin In 2 x arc tan " ...

    Text Solution

    |

  18. Compute the integrals : int(1) ^(15) "arc tan " sqrt(sqrt(x) - 1)...

    Text Solution

    |

  19. Prove that int(0)^(1) ("arc cosx")^(n) dx = n ((pi)/(2))^(n-1) - n ...

    Text Solution

    |

  20. Prove that if f'' is continuous on [a,b] then the following formula...

    Text Solution

    |