Home
Class 12
MATHS
Compute the integrals : int (x - 1)...

Compute the integrals :
`int (x - 1)e^(-x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To compute the integral \(\int (x - 1)e^{-x} \, dx\), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \(u\) and \(dv\) Let: - \(u = x - 1\) (which we will differentiate) - \(dv = e^{-x} \, dx\) (which we will integrate) ### Step 2: Differentiate \(u\) and integrate \(dv\) Now, we differentiate \(u\) and integrate \(dv\): - \(du = dx\) - To find \(v\), we integrate \(dv\): \[ v = \int e^{-x} \, dx = -e^{-x} \] ### Step 3: Apply the integration by parts formula Substituting \(u\), \(du\), \(v\), and \(dv\) into the integration by parts formula: \[ \int (x - 1)e^{-x} \, dx = (x - 1)(-e^{-x}) - \int (-e^{-x}) \, dx \] This simplifies to: \[ = -(x - 1)e^{-x} + \int e^{-x} \, dx \] ### Step 4: Integrate \(e^{-x}\) Now we compute the remaining integral: \[ \int e^{-x} \, dx = -e^{-x} \] ### Step 5: Substitute back into the equation Substituting this back into our equation gives: \[ \int (x - 1)e^{-x} \, dx = -(x - 1)e^{-x} - e^{-x} + C \] ### Step 6: Simplify the expression Now, we can simplify the expression: \[ = -xe^{-x} + e^{-x} - e^{-x} + C \] \[ = -xe^{-x} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int (x - 1)e^{-x} \, dx = -xe^{-x} + C \]
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 7 (Approximating Definite Integrals)|5 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6. 5 (Simplification of Integrals Based on the Properties of Symmetry of Integrands)|14 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos
IA MARON-THE DEFINITE INTEGRAL -6 . 6 (Integration by Parts. Reduction Formulas)
  1. Compute the integral int (1)^(0) I n ^(3) x dx

    Text Solution

    |

  2. Compute the integral int(0)^(pi^(2)/4) sin sqrt(x) dx

    Text Solution

    |

  3. Compute the integral I = int(0)^(1) ("arc sin x")/(sqrt(1 - x^(2)))dx

    Text Solution

    |

  4. int(0)^(pi//2) x^(2) sin x " " dx=

    Text Solution

    |

  5. Compute the integral I(n) = int(0)^(a) (a^(2) - x^(2))^(n) dx , where...

    Text Solution

    |

  6. Using the result of the preceding problem obtain the following formula...

    Text Solution

    |

  7. Compute the integral H(m) = int(0)^(pi//2) sin^(m) x dx = int(0)^(p...

    Text Solution

    |

  8. Compute the integral I = int(0)^(x) x sin^(m) x dx (m is natur...

    Text Solution

    |

  9. Compute the integral I (n) = int(0)^(1) x^(m) (I n x)^(n) dx , m gt 0,...

    Text Solution

    |

  10. Compute the integral I(m,n) = int(0)^(1) x^(m) (! - x)^(n) dx , where...

    Text Solution

    |

  11. Compute the integrals : int(0)^(1) " arc tan " sqrt(x) dx

    Text Solution

    |

  12. Compute the integrals : int (x - 1)e^(-x) dx

    Text Solution

    |

  13. Compute the integrals : int(pi//4)^(pi//3) (x dx)/( sin^(2) x)

    Text Solution

    |

  14. Compute the integrals : int(0)^(1) x "arc tan x dx

    Text Solution

    |

  15. Compute the integrals : int(0)^(1) x I n (1 + x^(2)) dx

    Text Solution

    |

  16. int(0)^(pi//4) log (1+tan x) dx =?

    Text Solution

    |

  17. Compute the integrals : int (0) ^(pi//2) " sin In 2 x arc tan " ...

    Text Solution

    |

  18. Compute the integrals : int(1) ^(15) "arc tan " sqrt(sqrt(x) - 1)...

    Text Solution

    |

  19. Prove that int(0)^(1) ("arc cosx")^(n) dx = n ((pi)/(2))^(n-1) - n ...

    Text Solution

    |

  20. Prove that if f'' is continuous on [a,b] then the following formula...

    Text Solution

    |