Home
Class 12
MATHS
Compute the integrals : int(pi//4)^(...

Compute the integrals :
`int_(pi//4)^(pi//3) (x dx)/( sin^(2) x)`

Text Solution

AI Generated Solution

The correct Answer is:
To compute the integral \[ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{x \, dx}{\sin^2 x}, \] we will use integration by parts. ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = x \) (which means \( du = dx \)) - \( dv = \frac{dx}{\sin^2 x} \) (which means we need to find \( v \)) ### Step 2: Find \( v \) To find \( v \), we need to integrate \( dv \): \[ v = \int \frac{dx}{\sin^2 x} = -\cot x. \] ### Step 3: Apply integration by parts Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du, \] we have: \[ I = \left[-x \cot x \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} - \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (-\cot x) \, dx. \] ### Step 4: Evaluate the boundary term Now we evaluate the boundary term: \[ \left[-x \cot x \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = -\left(\frac{\pi}{3} \cot\left(\frac{\pi}{3}\right) - \frac{\pi}{4} \cot\left(\frac{\pi}{4}\right)\right). \] We know that: \[ \cot\left(\frac{\pi}{3}\right) = \frac{1}{\sqrt{3}}, \quad \cot\left(\frac{\pi}{4}\right) = 1. \] Thus, substituting these values: \[ = -\left(\frac{\pi}{3} \cdot \frac{1}{\sqrt{3}} - \frac{\pi}{4} \cdot 1\right) = -\left(\frac{\pi}{3\sqrt{3}} - \frac{\pi}{4}\right). \] ### Step 5: Simplify the expression Now, we need to simplify: \[ -\left(\frac{\pi}{3\sqrt{3}} - \frac{\pi}{4}\right) = \frac{\pi}{4} - \frac{\pi}{3\sqrt{3}}. \] ### Step 6: Evaluate the remaining integral Now we need to evaluate the integral: \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cot x \, dx. \] The integral of \( \cot x \) is \( \ln(\sin x) \): \[ \int \cot x \, dx = \ln(\sin x). \] Thus, \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cot x \, dx = \left[\ln(\sin x)\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \ln(\sin(\frac{\pi}{3})) - \ln(\sin(\frac{\pi}{4})). \] We know: \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}. \] Thus, \[ = \ln\left(\frac{\sqrt{3}}{2}\right) - \ln\left(\frac{1}{\sqrt{2}}\right) = \ln\left(\frac{\sqrt{3}}{2} \cdot \sqrt{2}\right) = \ln\left(\frac{\sqrt{6}}{2}\right). \] ### Step 7: Combine results Combining everything, we have: \[ I = \left(\frac{\pi}{4} - \frac{\pi}{3\sqrt{3}}\right) + \ln\left(\frac{\sqrt{6}}{2}\right). \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\pi}{4} - \frac{\pi}{3\sqrt{3}} + \ln\left(\frac{\sqrt{6}}{2}\right). \]
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 7 (Approximating Definite Integrals)|5 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6. 5 (Simplification of Integrals Based on the Properties of Symmetry of Integrands)|14 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos
IA MARON-THE DEFINITE INTEGRAL -6 . 6 (Integration by Parts. Reduction Formulas)
  1. Compute the integral int (1)^(0) I n ^(3) x dx

    Text Solution

    |

  2. Compute the integral int(0)^(pi^(2)/4) sin sqrt(x) dx

    Text Solution

    |

  3. Compute the integral I = int(0)^(1) ("arc sin x")/(sqrt(1 - x^(2)))dx

    Text Solution

    |

  4. int(0)^(pi//2) x^(2) sin x " " dx=

    Text Solution

    |

  5. Compute the integral I(n) = int(0)^(a) (a^(2) - x^(2))^(n) dx , where...

    Text Solution

    |

  6. Using the result of the preceding problem obtain the following formula...

    Text Solution

    |

  7. Compute the integral H(m) = int(0)^(pi//2) sin^(m) x dx = int(0)^(p...

    Text Solution

    |

  8. Compute the integral I = int(0)^(x) x sin^(m) x dx (m is natur...

    Text Solution

    |

  9. Compute the integral I (n) = int(0)^(1) x^(m) (I n x)^(n) dx , m gt 0,...

    Text Solution

    |

  10. Compute the integral I(m,n) = int(0)^(1) x^(m) (! - x)^(n) dx , where...

    Text Solution

    |

  11. Compute the integrals : int(0)^(1) " arc tan " sqrt(x) dx

    Text Solution

    |

  12. Compute the integrals : int (x - 1)e^(-x) dx

    Text Solution

    |

  13. Compute the integrals : int(pi//4)^(pi//3) (x dx)/( sin^(2) x)

    Text Solution

    |

  14. Compute the integrals : int(0)^(1) x "arc tan x dx

    Text Solution

    |

  15. Compute the integrals : int(0)^(1) x I n (1 + x^(2)) dx

    Text Solution

    |

  16. int(0)^(pi//4) log (1+tan x) dx =?

    Text Solution

    |

  17. Compute the integrals : int (0) ^(pi//2) " sin In 2 x arc tan " ...

    Text Solution

    |

  18. Compute the integrals : int(1) ^(15) "arc tan " sqrt(sqrt(x) - 1)...

    Text Solution

    |

  19. Prove that int(0)^(1) ("arc cosx")^(n) dx = n ((pi)/(2))^(n-1) - n ...

    Text Solution

    |

  20. Prove that if f'' is continuous on [a,b] then the following formula...

    Text Solution

    |