Home
Class 12
MATHS
Compute the integrals : int(0)^(1) ...

Compute the integrals :
`int_(0)^(1) x "arc tan x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To compute the integral \( \int_{0}^{1} x \, \text{arctan}(x) \, dx \), we will use the method of integration by parts. ### Step 1: Identify \( u \) and \( dv \) We will set: - \( u = \text{arctan}(x) \) (which we will differentiate) - \( dv = x \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we compute \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{1+x^2} \, dx \] - Integrate \( dv \): \[ v = \int x \, dx = \frac{x^2}{2} \] ### Step 3: Apply the integration by parts formula The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] Substituting our values into the formula: \[ \int_{0}^{1} x \, \text{arctan}(x) \, dx = \left[ \text{arctan}(x) \cdot \frac{x^2}{2} \right]_{0}^{1} - \int_{0}^{1} \frac{x^2}{2} \cdot \frac{1}{1+x^2} \, dx \] ### Step 4: Evaluate the boundary term Now we evaluate the boundary term: \[ \left[ \text{arctan}(x) \cdot \frac{x^2}{2} \right]_{0}^{1} = \left( \text{arctan}(1) \cdot \frac{1^2}{2} \right) - \left( \text{arctan}(0) \cdot \frac{0^2}{2} \right) \] Calculating this: \[ = \left( \frac{\pi}{4} \cdot \frac{1}{2} \right) - \left( 0 \cdot 0 \right) = \frac{\pi}{8} \] ### Step 5: Simplify the remaining integral Now we simplify the remaining integral: \[ \int_{0}^{1} \frac{x^2}{2(1+x^2)} \, dx = \frac{1}{2} \int_{0}^{1} \frac{x^2}{1+x^2} \, dx \] We can rewrite \( \frac{x^2}{1+x^2} \) as \( 1 - \frac{1}{1+x^2} \): \[ \int_{0}^{1} \frac{x^2}{1+x^2} \, dx = \int_{0}^{1} 1 \, dx - \int_{0}^{1} \frac{1}{1+x^2} \, dx \] Calculating these integrals: - The first integral: \[ \int_{0}^{1} 1 \, dx = 1 \] - The second integral: \[ \int_{0}^{1} \frac{1}{1+x^2} \, dx = \text{arctan}(x) \bigg|_{0}^{1} = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] Thus, \[ \int_{0}^{1} \frac{x^2}{1+x^2} \, dx = 1 - \frac{\pi}{4} \] ### Step 6: Combine everything Now we substitute back into our expression: \[ \int_{0}^{1} x \, \text{arctan}(x) \, dx = \frac{\pi}{8} - \frac{1}{2} \left( 1 - \frac{\pi}{4} \right) \] This simplifies to: \[ = \frac{\pi}{8} - \frac{1}{2} + \frac{\pi}{8} = \frac{\pi}{4} - \frac{1}{2} \] ### Final Answer Thus, the final result is: \[ \int_{0}^{1} x \, \text{arctan}(x) \, dx = \frac{\pi}{4} - \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 7 (Approximating Definite Integrals)|5 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6. 5 (Simplification of Integrals Based on the Properties of Symmetry of Integrands)|14 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

Compute the integrals : int_(0)^(1) " arc tan " sqrt(x) dx

Compute the integral int_(0)^(1) xe^(x) dx

compute the integral : int_(1)^(2) (dx)/(x)

Compute the integrals : int (x - 1)e^(-x) dx

int_(0)^(1) x tan^(-1) x " "dx =

Compute the integral I = int_(0)^(1) ("arc sin x")/(sqrt(1 - x^(2)))dx

IA MARON-THE DEFINITE INTEGRAL -6 . 6 (Integration by Parts. Reduction Formulas)
  1. Compute the integral int (1)^(0) I n ^(3) x dx

    Text Solution

    |

  2. Compute the integral int(0)^(pi^(2)/4) sin sqrt(x) dx

    Text Solution

    |

  3. Compute the integral I = int(0)^(1) ("arc sin x")/(sqrt(1 - x^(2)))dx

    Text Solution

    |

  4. int(0)^(pi//2) x^(2) sin x " " dx=

    Text Solution

    |

  5. Compute the integral I(n) = int(0)^(a) (a^(2) - x^(2))^(n) dx , where...

    Text Solution

    |

  6. Using the result of the preceding problem obtain the following formula...

    Text Solution

    |

  7. Compute the integral H(m) = int(0)^(pi//2) sin^(m) x dx = int(0)^(p...

    Text Solution

    |

  8. Compute the integral I = int(0)^(x) x sin^(m) x dx (m is natur...

    Text Solution

    |

  9. Compute the integral I (n) = int(0)^(1) x^(m) (I n x)^(n) dx , m gt 0,...

    Text Solution

    |

  10. Compute the integral I(m,n) = int(0)^(1) x^(m) (! - x)^(n) dx , where...

    Text Solution

    |

  11. Compute the integrals : int(0)^(1) " arc tan " sqrt(x) dx

    Text Solution

    |

  12. Compute the integrals : int (x - 1)e^(-x) dx

    Text Solution

    |

  13. Compute the integrals : int(pi//4)^(pi//3) (x dx)/( sin^(2) x)

    Text Solution

    |

  14. Compute the integrals : int(0)^(1) x "arc tan x dx

    Text Solution

    |

  15. Compute the integrals : int(0)^(1) x I n (1 + x^(2)) dx

    Text Solution

    |

  16. int(0)^(pi//4) log (1+tan x) dx =?

    Text Solution

    |

  17. Compute the integrals : int (0) ^(pi//2) " sin In 2 x arc tan " ...

    Text Solution

    |

  18. Compute the integrals : int(1) ^(15) "arc tan " sqrt(sqrt(x) - 1)...

    Text Solution

    |

  19. Prove that int(0)^(1) ("arc cosx")^(n) dx = n ((pi)/(2))^(n-1) - n ...

    Text Solution

    |

  20. Prove that if f'' is continuous on [a,b] then the following formula...

    Text Solution

    |