Home
Class 12
MATHS
Integration of rational functions in...

Integration of rational functions
`int(dx)/((x^(2)-4x+4)(x^(2)-4x+5))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{dx}{(x^2 - 4x + 4)(x^2 - 4x + 5)}, \] we will follow these steps: ### Step 1: Factor the Quadratics First, we notice that \(x^2 - 4x + 4\) can be factored as \((x - 2)^2\). The second quadratic \(x^2 - 4x + 5\) cannot be factored further over the reals, but we can complete the square: \[ x^2 - 4x + 5 = (x - 2)^2 + 1. \] Thus, we can rewrite the integral as: \[ \int \frac{dx}{(x - 2)^2 \left((x - 2)^2 + 1\right)}. \] ### Step 2: Partial Fraction Decomposition Next, we will perform partial fraction decomposition on the integrand: \[ \frac{1}{(x - 2)^2 \left((x - 2)^2 + 1\right)} = \frac{A}{(x - 2)} + \frac{B}{(x - 2)^2} + \frac{Cx + D}{(x - 2)^2 + 1}. \] Multiplying through by the denominator \((x - 2)^2((x - 2)^2 + 1)\) gives: \[ 1 = A((x - 2)((x - 2)^2 + 1)) + B((x - 2)^2 + 1) + (Cx + D)(x - 2)^2. \] ### Step 3: Solve for Coefficients To find the coefficients \(A\), \(B\), \(C\), and \(D\), we can substitute convenient values for \(x\) or equate coefficients. 1. Set \(x = 2\): \[ 1 = B(1) \implies B = 1. \] 2. Now, substituting \(B\) back into the equation and simplifying will help us find \(A\), \(C\), and \(D\). After some algebra, we find: \[ A = 0, \quad C = 0, \quad D = -1. \] Thus, we have: \[ \frac{1}{(x - 2)^2((x - 2)^2 + 1)} = \frac{0}{(x - 2)} + \frac{1}{(x - 2)^2} - \frac{1}{(x - 2)^2 + 1}. \] ### Step 4: Integrate Each Term Now we can integrate each term separately: 1. \(\int \frac{1}{(x - 2)^2} \, dx = -\frac{1}{x - 2} + C_1\). 2. \(\int \frac{1}{(x - 2)^2 + 1} \, dx = \tan^{-1}(x - 2) + C_2\). Combining these results, we have: \[ \int \frac{dx}{(x - 2)^2((x - 2)^2 + 1)} = -\frac{1}{x - 2} - \tan^{-1}(x - 2) + C. \] ### Final Answer Thus, the final result for the integral is: \[ -\frac{1}{x - 2} - \tan^{-1}(x - 2) + C. \]
Promotional Banner

Topper's Solved these Questions

  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.2 INTEGRATION OF CERTAIN IRRATIONAL EXPRESSIONS|5 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.4 QUESTIONS|12 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Static Moments and Moments of Inertia. Determining Coordinates of the Centre of Gravity|15 Videos
  • DIFFERENTIATION OF FUNCTIONS

    IA MARON|Exercise 2.7 (ADDITIONAL PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Integration of rational functions I = int(dx)/((x^(2)+1)(x^(2)+4))

int(dx)/(x^(2)-4x+5)

Integration of rational functions I=int((x+1)dx)/((x^(2)+x+2)(x^(2)+4x+5))

Integration of rational functions I=int(x dx)/(x^(3)+1).

Integration of rational functions I = int(x^(4)dx)/((2+x)(x^(2)-1))

Integration of rational functions int(5x^(3)+9x^(2)-22x-8)/(x^(3)-4x) dx

Integration of rational functions int(x^(3)+3)/((x+1)(x^(2)+1))dx.

Integrate the rational functions (5x)/((x+1)(x^(2)-4))