Home
Class 12
MATHS
Integration of rational functions in...

Integration of rational functions
`int(x^(3)+3)/((x+1)(x^(2)+1))dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^3 + 3}{(x + 1)(x^2 + 1)} \, dx, \] we can break it down into simpler parts. Here’s a step-by-step solution: ### Step 1: Simplify the integrand We start by rewriting the numerator \(x^3 + 3\) in a way that can be easily integrated. We can express \(x^3 + 3\) as: \[ x^3 + 3 = (x^3 + 1) + 2 = (x + 1)(x^2 - x + 1) + 2. \] Thus, we can rewrite the integral as: \[ \int \frac{(x + 1)(x^2 - x + 1) + 2}{(x + 1)(x^2 + 1)} \, dx. \] ### Step 2: Split the integral Now, we can split the integral into two parts: \[ \int \frac{(x + 1)(x^2 - x + 1)}{(x + 1)(x^2 + 1)} \, dx + \int \frac{2}{(x + 1)(x^2 + 1)} \, dx. \] The first part simplifies to: \[ \int \frac{x^2 - x + 1}{x^2 + 1} \, dx. \] ### Step 3: Integrate the first part For the first integral, we can separate it further: \[ \int \left(1 - \frac{x}{x^2 + 1} + \frac{1}{x^2 + 1}\right) \, dx. \] This gives us three separate integrals: \[ \int 1 \, dx - \int \frac{x}{x^2 + 1} \, dx + \int \frac{1}{x^2 + 1} \, dx. \] Calculating these integrals: 1. \(\int 1 \, dx = x\). 2. For \(\int \frac{x}{x^2 + 1} \, dx\), we can use the substitution \(u = x^2 + 1\), \(du = 2x \, dx\), which leads to \(\frac{1}{2} \ln|x^2 + 1|\). 3. \(\int \frac{1}{x^2 + 1} \, dx = \tan^{-1}(x)\). So, combining these results, we have: \[ x - \frac{1}{2} \ln|x^2 + 1| + \tan^{-1}(x). \] ### Step 4: Integrate the second part Now we need to integrate the second part: \[ \int \frac{2}{(x + 1)(x^2 + 1)} \, dx. \] We can use partial fraction decomposition: \[ \frac{2}{(x + 1)(x^2 + 1)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 1}. \] Multiplying through by the denominator \((x + 1)(x^2 + 1)\) and equating coefficients gives us a system of equations to solve for \(A\), \(B\), and \(C\). After solving, we find: \[ A = 2, \quad B = 0, \quad C = -2. \] Thus, we can rewrite the integral as: \[ \int \left(\frac{2}{x + 1} - \frac{2}{x^2 + 1}\right) \, dx. \] Calculating these integrals: 1. \(\int \frac{2}{x + 1} \, dx = 2 \ln|x + 1|\). 2. \(\int \frac{2}{x^2 + 1} \, dx = 2 \tan^{-1}(x)\). ### Step 5: Combine all parts Now we combine all the parts: \[ x - \frac{1}{2} \ln|x^2 + 1| + \tan^{-1}(x) + 2 \ln|x + 1| - 2 \tan^{-1}(x) + C. \] This simplifies to: \[ x - \frac{1}{2} \ln|x^2 + 1| - \tan^{-1}(x) + 2 \ln|x + 1| + C. \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{x^3 + 3}{(x + 1)(x^2 + 1)} \, dx = x - \frac{1}{2} \ln|x^2 + 1| - \tan^{-1}(x) + 2 \ln|x + 1| + C. \]
Promotional Banner

Topper's Solved these Questions

  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.2 INTEGRATION OF CERTAIN IRRATIONAL EXPRESSIONS|5 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.4 QUESTIONS|12 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Static Moments and Moments of Inertia. Determining Coordinates of the Centre of Gravity|15 Videos
  • DIFFERENTIATION OF FUNCTIONS

    IA MARON|Exercise 2.7 (ADDITIONAL PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Integration of rational functions I = int(x^(4)dx)/((2+x)(x^(2)-1))

Integration of rational functions I = int(dx)/((x^(2)+1)(x^(2)+4))

Integration of rational functions I=int(x dx)/(x^(3)+1).

Integration of rational functions I=int(2x^(2)-3x+3)/(x^(3)-2x^(2)+x)dx.

Integration of rational functions int(dx)/((x^(2)-4x+4)(x^(2)-4x+5))

Integration of rational functions int (15x^(2)-4x-81)/((x-3)(x-4)(x-1))dx.

Integration of rational functions int(5x^(3)+9x^(2)-22x-8)/(x^(3)-4x) dx