Home
Class 12
MATHS
I=int(5x+4)/(x^(2)+2x+5)dx....

`I=int(5x+4)/(x^(2)+2x+5)dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{5x + 4}{x^2 + 2x + 5} \, dx \), we will follow these steps: ### Step 1: Simplify the Integral We start with the integral: \[ I = \int \frac{5x + 4}{x^2 + 2x + 5} \, dx \] Here, we can notice that the denominator \( x^2 + 2x + 5 \) can be rewritten to facilitate integration. ### Step 2: Complete the Square The quadratic expression in the denominator can be completed to a perfect square: \[ x^2 + 2x + 5 = (x + 1)^2 + 4 \] Thus, we rewrite the integral as: \[ I = \int \frac{5x + 4}{(x + 1)^2 + 4} \, dx \] ### Step 3: Split the Integral Next, we can split the integral into two parts: \[ I = \int \frac{5x + 2 + 2}{(x + 1)^2 + 4} \, dx = \int \frac{5x + 2}{(x + 1)^2 + 4} \, dx + \int \frac{2}{(x + 1)^2 + 4} \, dx \] ### Step 4: Substitute for the First Integral For the first integral, we can use the substitution \( u = x + 1 \), which gives \( du = dx \) and \( x = u - 1 \): \[ I_1 = \int \frac{5(u - 1) + 2}{u^2 + 4} \, du = \int \frac{5u - 3}{u^2 + 4} \, du \] This can be split into: \[ I_1 = 5 \int \frac{u}{u^2 + 4} \, du - 3 \int \frac{1}{u^2 + 4} \, du \] ### Step 5: Solve the First Integral For the first part \( \int \frac{u}{u^2 + 4} \, du \), we can use the substitution \( v = u^2 + 4 \) leading to: \[ dv = 2u \, du \implies du = \frac{dv}{2u} \] Thus, \[ \int \frac{u}{u^2 + 4} \, du = \frac{1}{2} \ln |u^2 + 4| + C \] ### Step 6: Solve the Second Integral For the second part \( \int \frac{1}{u^2 + 4} \, du \): \[ \int \frac{1}{u^2 + 4} \, du = \frac{1}{2} \tan^{-1}\left(\frac{u}{2}\right) + C \] ### Step 7: Combine the Results Combining these results gives: \[ I_1 = 5 \left( \frac{1}{2} \ln |u^2 + 4| \right) - 3 \left( \frac{1}{2} \tan^{-1}\left(\frac{u}{2}\right) \right) \] Substituting back \( u = x + 1 \): \[ I_1 = \frac{5}{2} \ln |(x + 1)^2 + 4| - \frac{3}{2} \tan^{-1}\left(\frac{x + 1}{2}\right) \] ### Step 8: Solve the Second Integral Now we return to the second integral: \[ I_2 = \int \frac{2}{(x + 1)^2 + 4} \, dx = 2 \cdot \frac{1}{2} \tan^{-1}\left(\frac{x + 1}{2}\right) = \tan^{-1}\left(\frac{x + 1}{2}\right) \] ### Step 9: Combine All Parts Finally, we combine \( I_1 \) and \( I_2 \): \[ I = I_1 + I_2 = \frac{5}{2} \ln |(x + 1)^2 + 4| - \frac{3}{2} \tan^{-1}\left(\frac{x + 1}{2}\right) + \tan^{-1}\left(\frac{x + 1}{2}\right) + C \] This simplifies to: \[ I = \frac{5}{2} \ln |(x + 1)^2 + 4| - \frac{1}{2} \tan^{-1}\left(\frac{x + 1}{2}\right) + C \] ### Final Answer Thus, the final answer is: \[ I = \frac{5}{2} \ln |(x + 1)^2 + 4| - \frac{1}{2} \tan^{-1}\left(\frac{x + 1}{2}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.5 INTEGRATION OF A BINOMIAL DIFFERENTIAL|10 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.6 INTEGRATION OF TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS|14 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.2 INTEGRATION OF CERTAIN IRRATIONAL EXPRESSIONS|5 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Static Moments and Moments of Inertia. Determining Coordinates of the Centre of Gravity|15 Videos
  • DIFFERENTIATION OF FUNCTIONS

    IA MARON|Exercise 2.7 (ADDITIONAL PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

int(x+1)/(x^(2)+4x+5)dx

int((x+4)dx)/(x^(2)-2x+5)

int(2x+5)/(x^(2)+5x+7)dx

"int(4x+5)/(x^(2)+x-2)dx

I=int(x^(2))/(x^(2)+5)dx

int(x)/(x^(2)+4x+5)dx

int(dx)/(x^(2)-4x+5)

int(4x+5)/(x^(2)+x-2)dx

int(4x+5)/(x^(2)+x-2)dx

I= int ( dx)/( x^(2) + 4x+ 5) .