Home
Class 12
MATHS
int((x^(2)-1)dx)/(xsqrt(1+3x^(2)+x^(4)))...

`int((x^(2)-1)dx)/(xsqrt(1+3x^(2)+x^(4))).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^2 - 1}{x \sqrt{1 + 3x^2 + x^4}} \, dx, \] we will follow a series of steps to simplify and evaluate the integral. ### Step 1: Simplify the Denominator First, we notice that the expression under the square root in the denominator can be rewritten. We have: \[ 1 + 3x^2 + x^4 = (x^2 + 1)^2. \] Thus, we can rewrite the integral as: \[ \int \frac{x^2 - 1}{x \sqrt{(x^2 + 1)^2}} \, dx = \int \frac{x^2 - 1}{x (x^2 + 1)} \, dx. \] ### Step 2: Split the Fraction Next, we can split the fraction: \[ \frac{x^2 - 1}{x(x^2 + 1)} = \frac{x^2}{x(x^2 + 1)} - \frac{1}{x(x^2 + 1)} = \frac{1}{x} - \frac{1}{x(x^2 + 1)}. \] So, we can rewrite the integral as: \[ \int \left( \frac{1}{x} - \frac{1}{x(x^2 + 1)} \right) \, dx. \] ### Step 3: Integrate Each Term Now we can integrate each term separately: 1. The first term: \[ \int \frac{1}{x} \, dx = \ln |x| + C_1. \] 2. The second term can be integrated using partial fractions: \[ \frac{1}{x(x^2 + 1)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1}. \] Multiplying through by the denominator \(x(x^2 + 1)\) gives: \[ 1 = A(x^2 + 1) + (Bx + C)x. \] Expanding and equating coefficients, we find: - For \(x^2\): \(A + B = 0\) - For \(x\): \(C = 0\) - For constant: \(A = 1\) From \(A + B = 0\), we have \(B = -1\). Thus, we can write: \[ \frac{1}{x(x^2 + 1)} = \frac{1}{x} - \frac{x}{x^2 + 1}. \] So, we integrate: \[ \int \frac{1}{x(x^2 + 1)} \, dx = \int \frac{1}{x} \, dx - \int \frac{x}{x^2 + 1} \, dx. \] The second integral can be solved using substitution \(u = x^2 + 1\), \(du = 2x \, dx\): \[ \int \frac{x}{x^2 + 1} \, dx = \frac{1}{2} \ln |x^2 + 1| + C_2. \] ### Step 4: Combine Results Combining all the results, we have: \[ \int \frac{x^2 - 1}{x \sqrt{1 + 3x^2 + x^4}} \, dx = \ln |x| - \left( \ln |x| - \frac{1}{2} \ln |x^2 + 1| \right) + C. \] This simplifies to: \[ \frac{1}{2} \ln |x^2 + 1| + C. \] ### Final Answer Thus, the final answer is: \[ \int \frac{x^2 - 1}{x \sqrt{1 + 3x^2 + x^4}} \, dx = \frac{1}{2} \ln |x^2 + 1| + C. \]
Promotional Banner

Topper's Solved these Questions

  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.5 INTEGRATION OF A BINOMIAL DIFFERENTIAL|10 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.6 INTEGRATION OF TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS|14 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.2 INTEGRATION OF CERTAIN IRRATIONAL EXPRESSIONS|5 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Static Moments and Moments of Inertia. Determining Coordinates of the Centre of Gravity|15 Videos
  • DIFFERENTIATION OF FUNCTIONS

    IA MARON|Exercise 2.7 (ADDITIONAL PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(xsqrt(x^(2)-4))

int_(1)^(2)dx/(xsqrt(x^2-1))

Evaluate : int_(1)^(2) (dx)/(xsqrt(x^(2)-1))

int(x+sqrt(1-x^(2)))/(x.sqrt(1-x^(2)))dx=

int(x+1sqrt(1-x^(2)))/(xsqrt(1-x^(2)))dx=

int(xsqrt(x^(2)+a^(2)))dx

int(1)/(sin^(-1)xsqrt(1-x^(2)))dx

Evaluate int(log(sec^(-1)x)dx)/(xsqrt(x^(2)-1))dx

int(1)/(cos^(-1)x.sqrt(1-x^(2)))dx=