Home
Class 12
MATHS
Integration of a binomial differential ...

Integration of a binomial differential
`I=intx^(5)(1+x^(3))^((2)/(3))dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int x^5 (1 + x^3)^{\frac{2}{3}} \, dx \), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = 1 + x^3 \). Then, we differentiate \( t \) with respect to \( x \): \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] We also need to express \( x^5 \) in terms of \( t \). Since \( t = 1 + x^3 \), we have: \[ x^3 = t - 1 \quad \Rightarrow \quad x = (t - 1)^{\frac{1}{3}} \] Thus, \[ x^5 = (x^3)^{\frac{5}{3}} = (t - 1)^{\frac{5}{3}} \] ### Step 2: Rewrite the Integral Substituting \( t \) and \( dx \) into the integral, we get: \[ I = \int (t - 1)^{\frac{5}{3}} t^{\frac{2}{3}} \cdot \frac{dt}{3x^2} \] From \( t = 1 + x^3 \), we can express \( x^2 \) as: \[ x^2 = (t - 1)^{\frac{2}{3}} \] Thus, the integral becomes: \[ I = \int (t - 1)^{\frac{5}{3}} t^{\frac{2}{3}} \cdot \frac{dt}{3(t - 1)^{\frac{2}{3}}} \] This simplifies to: \[ I = \frac{1}{3} \int (t - 1)^{\frac{5}{3} - \frac{2}{3}} t^{\frac{2}{3}} \, dt = \frac{1}{3} \int (t - 1)^{1} t^{\frac{2}{3}} \, dt \] ### Step 3: Expand and Integrate Now we expand the integrand: \[ (t - 1) t^{\frac{2}{3}} = t^{\frac{5}{3}} - t^{\frac{2}{3}} \] Thus, the integral becomes: \[ I = \frac{1}{3} \left( \int t^{\frac{5}{3}} \, dt - \int t^{\frac{2}{3}} \, dt \right) \] ### Step 4: Perform the Integrals Now we can integrate each term: \[ \int t^{\frac{5}{3}} \, dt = \frac{t^{\frac{5}{3} + 1}}{\frac{5}{3} + 1} = \frac{t^{\frac{8}{3}}}{\frac{8}{3}} = \frac{3}{8} t^{\frac{8}{3}} \] \[ \int t^{\frac{2}{3}} \, dt = \frac{t^{\frac{2}{3} + 1}}{\frac{2}{3} + 1} = \frac{t^{\frac{5}{3}}}{\frac{5}{3}} = \frac{3}{5} t^{\frac{5}{3}} \] ### Step 5: Combine Results Substituting back into \( I \): \[ I = \frac{1}{3} \left( \frac{3}{8} t^{\frac{8}{3}} - \frac{3}{5} t^{\frac{5}{3}} \right) + C \] \[ I = \frac{1}{8} t^{\frac{8}{3}} - \frac{1}{5} t^{\frac{5}{3}} + C \] ### Step 6: Substitute Back for \( t \) Recall that \( t = 1 + x^3 \): \[ I = \frac{1}{8} (1 + x^3)^{\frac{8}{3}} - \frac{1}{5} (1 + x^3)^{\frac{5}{3}} + C \] ### Final Answer Thus, the final result for the integral is: \[ I = \frac{1}{8} (1 + x^3)^{\frac{8}{3}} - \frac{1}{5} (1 + x^3)^{\frac{5}{3}} + C \]
Promotional Banner

Topper's Solved these Questions

  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.6 INTEGRATION OF TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS|14 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.7 INTEGRATION OF CERTAIN IRRATIONAL FUNCTIONS WITH THE AID OF TRIGONOMETRIC OR HYPERBOLIC SUBSTITUTIONS|5 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.4 QUESTIONS|12 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Static Moments and Moments of Inertia. Determining Coordinates of the Centre of Gravity|15 Videos
  • DIFFERENTIATION OF FUNCTIONS

    IA MARON|Exercise 2.7 (ADDITIONAL PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Integration of a binomial differential intx^(3)(1+x^(2))^((1)/(2))dx.

Integration of a binomial differential I=intsqrt(x)(2+sqrt(x))^(2)dx.

intx^(5)sqrt(a^(3)+x^(3))dx=

intx^(2)(1-x)^((5)/(2))dx