Home
Class 12
MATHS
Integration of trigonometric and hype...

Integration of trigonometric and hyperbolic functions
`I=int(cos^(3)x)/(sin^(6)x)dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\cos^3 x}{\sin^6 x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We can express the integral in terms of sine and cosine functions: \[ I = \int \frac{\cos^3 x}{\sin^6 x} \, dx = \int \cos^3 x \cdot \csc^6 x \, dx \] ### Step 2: Use the identity for cosine Using the identity \( \cos^2 x = 1 - \sin^2 x \), we can rewrite \( \cos^3 x \): \[ \cos^3 x = \cos^2 x \cdot \cos x = (1 - \sin^2 x) \cos x \] Thus, we can rewrite the integral as: \[ I = \int (1 - \sin^2 x) \cdot \cos x \cdot \csc^6 x \, dx \] ### Step 3: Substitute \( t = \sin x \) Let \( t = \sin x \), then \( dt = \cos x \, dx \). The integral becomes: \[ I = \int (1 - t^2) \cdot \frac{1}{t^6} \, dt = \int \frac{1 - t^2}{t^6} \, dt \] ### Step 4: Split the integral We can split the integral into two parts: \[ I = \int \frac{1}{t^6} \, dt - \int \frac{t^2}{t^6} \, dt = \int t^{-6} \, dt - \int t^{-4} \, dt \] ### Step 5: Integrate each term Now we can integrate each term: 1. For \( \int t^{-6} \, dt \): \[ \int t^{-6} \, dt = \frac{t^{-5}}{-5} = -\frac{1}{5t^5} \] 2. For \( \int t^{-4} \, dt \): \[ \int t^{-4} \, dt = \frac{t^{-3}}{-3} = -\frac{1}{3t^3} \] ### Step 6: Combine the results Combining the results, we have: \[ I = -\frac{1}{5t^5} + \frac{1}{3t^3} + C \] ### Step 7: Substitute back \( t = \sin x \) Now we substitute back \( t = \sin x \): \[ I = -\frac{1}{5 \sin^5 x} + \frac{1}{3 \sin^3 x} + C \] ### Final Answer Thus, the final answer is: \[ I = \frac{1}{3 \sin^3 x} - \frac{1}{5 \sin^5 x} + C \]
Promotional Banner

Topper's Solved these Questions

  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.7 INTEGRATION OF CERTAIN IRRATIONAL FUNCTIONS WITH THE AID OF TRIGONOMETRIC OR HYPERBOLIC SUBSTITUTIONS|5 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.8 INTEGRATION OF OTHER TRANSCENDENTAL FUNCTIONS|5 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.5 INTEGRATION OF A BINOMIAL DIFFERENTIAL|10 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Static Moments and Moments of Inertia. Determining Coordinates of the Centre of Gravity|15 Videos
  • DIFFERENTIATION OF FUNCTIONS

    IA MARON|Exercise 2.7 (ADDITIONAL PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Integration of trigonometric and hyperbolic functions I=intcosh^(3) x dx.

Integration of trigonometric and hyperbolic functions I=int(dx)/(cos^(4)x).

Integration of trigonometric and hyperbolic functions I=intcosh^(2)x dx.

Integration of trigonometric and hyperbolic functions I= int(sin^(2)x)/(cos^(6)x)dx .

Integration of trigonometric and hyperbolic functions int(sin^(3)x)/(root3(cos^(2)x))dx.

Integration of trigonometric and hyperbolic functions I=int(dx)/(5+sinx+3cosx).

Integration of trigonometric and hyperbolic functions int tan^(7) x dx.

Integration of trigonometric and hyperbolic functions I=int(2tanx+3)/(sin^(2)x+2cos^(2)x)dx.

Integration of trigonometric and hyperbolic functions I=int(dx)/(sinx(2+cosx-2sinx)).