Home
Class 12
MATHS
Integration of trigonometric and hype...

Integration of trigonometric and hyperbolic functions
`I=int(dx)/(cos^(4)x).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{\cos^4 x} \), we can follow these steps: ### Step 1: Rewrite the Integral We can express \( \frac{1}{\cos^4 x} \) in terms of secant: \[ I = \int \sec^4 x \, dx \] ### Step 2: Use the Identity for Secant Recall the identity: \[ \sec^2 x = 1 + \tan^2 x \] Thus, we can express \( \sec^4 x \) as: \[ \sec^4 x = (\sec^2 x)^2 = (1 + \tan^2 x)^2 \] Expanding this gives: \[ \sec^4 x = 1 + 2\tan^2 x + \tan^4 x \] ### Step 3: Split the Integral Now we can split the integral: \[ I = \int (1 + 2\tan^2 x + \tan^4 x) \, dx \] This can be separated into three integrals: \[ I = \int 1 \, dx + 2 \int \tan^2 x \, dx + \int \tan^4 x \, dx \] ### Step 4: Solve Each Integral 1. The first integral: \[ \int 1 \, dx = x \] 2. The second integral: To integrate \( \tan^2 x \), we use the identity \( \tan^2 x = \sec^2 x - 1 \): \[ \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \int \sec^2 x \, dx - \int 1 \, dx = \tan x - x \] Therefore, \[ 2 \int \tan^2 x \, dx = 2(\tan x - x) = 2\tan x - 2x \] 3. The third integral: To integrate \( \tan^4 x \), we can use the identity \( \tan^4 x = \tan^2 x \cdot \tan^2 x \): \[ \int \tan^4 x \, dx = \int (\sec^2 x - 1)^2 \, dx = \int (\sec^4 x - 2\sec^2 x + 1) \, dx \] This requires integrating \( \sec^4 x \), which we already have as part of our original integral \( I \). We can express it as: \[ \int \tan^4 x \, dx = \frac{1}{3} \tan^3 x - \tan x + x \] ### Step 5: Combine the Results Now, we can combine all the results: \[ I = x + (2\tan x - 2x) + \left(\frac{1}{3} \tan^3 x - \tan x + x\right) \] Simplifying this gives: \[ I = \frac{1}{3} \tan^3 x + \tan x - x + C \] where \( C \) is the constant of integration. ### Final Result Thus, the integral \( I \) is: \[ I = \frac{1}{3} \tan^3 x + \tan x - x + C \]
Promotional Banner

Topper's Solved these Questions

  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.7 INTEGRATION OF CERTAIN IRRATIONAL FUNCTIONS WITH THE AID OF TRIGONOMETRIC OR HYPERBOLIC SUBSTITUTIONS|5 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.8 INTEGRATION OF OTHER TRANSCENDENTAL FUNCTIONS|5 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.5 INTEGRATION OF A BINOMIAL DIFFERENTIAL|10 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Static Moments and Moments of Inertia. Determining Coordinates of the Centre of Gravity|15 Videos
  • DIFFERENTIATION OF FUNCTIONS

    IA MARON|Exercise 2.7 (ADDITIONAL PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Integration of trigonometric and hyperbolic functions I= int(sin^(2)x)/(cos^(6)x)dx .

Integration of trigonometric and hyperbolic functions I=int(dx)/(5+sinx+3cosx).

Integration of trigonometric and hyperbolic functions I=int(cos^(3)x)/(sin^(6)x)dx.

Integration of trigonometric and hyperbolic functions I=intcosh^(2)x dx.

Integration of trigonometric and hyperbolic functions int tan^(7) x dx.

Integration of trigonometric and hyperbolic functions I=intcosh^(3) x dx.

Integration of trigonometric and hyperbolic functions I=int(2tanx+3)/(sin^(2)x+2cos^(2)x)dx.

Integration of trigonometric and hyperbolic functions I=int(dx)/(sinx(2+cosx-2sinx)).

Integration of trigonometric and hyperbolic functions int(sin^(3)x)/(root3(cos^(2)x))dx.