Home
Class 12
MATHS
Integration of certain irrational func...

Integration of certain irrational functions with the aid of trigonometric or hyperbolic substitutions
`I=int(sqrt(x^(2)+1))/(x^(2))dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sqrt{x^2 + 1}}{x^2} \, dx \), we will use trigonometric substitution. Here’s a step-by-step solution: ### Step 1: Trigonometric Substitution We start by substituting \( x = \tan(\theta) \). This gives us: \[ dx = \sec^2(\theta) \, d\theta \] Also, we have: \[ \sqrt{x^2 + 1} = \sqrt{\tan^2(\theta) + 1} = \sqrt{\sec^2(\theta)} = \sec(\theta) \] ### Step 2: Rewrite the Integral Substituting these into the integral, we get: \[ I = \int \frac{\sec(\theta)}{\tan^2(\theta)} \sec^2(\theta) \, d\theta \] This simplifies to: \[ I = \int \frac{\sec^3(\theta)}{\tan^2(\theta)} \, d\theta \] ### Step 3: Express in Terms of Sine and Cosine Recall that \( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \) and \( \sec(\theta) = \frac{1}{\cos(\theta)} \). Therefore, we can rewrite the integral as: \[ I = \int \frac{1}{\cos^3(\theta)} \cdot \frac{\cos^2(\theta)}{\sin^2(\theta)} \, d\theta = \int \frac{1}{\sin^2(\theta) \cos(\theta)} \, d\theta \] ### Step 4: Use the Identity for Integration Now, we can use the identity \( \csc^2(\theta) = \frac{1}{\sin^2(\theta)} \): \[ I = \int \csc^2(\theta) \sec(\theta) \, d\theta \] ### Step 5: Integrate The integral of \( \csc^2(\theta) \) is known: \[ \int \csc^2(\theta) \, d\theta = -\cot(\theta) \] Thus, we can write: \[ I = -\cot(\theta) \sec(\theta) + C \] ### Step 6: Back Substitute Now we need to convert back to \( x \). Recall that: \[ \cot(\theta) = \frac{1}{\tan(\theta)} = \frac{1}{x} \] and \[ \sec(\theta) = \sqrt{x^2 + 1} \] Thus: \[ I = -\frac{\sqrt{x^2 + 1}}{x} + C \] ### Final Answer The final result for the integral is: \[ I = -\frac{\sqrt{x^2 + 1}}{x} + C \]
Promotional Banner

Topper's Solved these Questions

  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.8 INTEGRATION OF OTHER TRANSCENDENTAL FUNCTIONS|5 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.6 INTEGRATION OF TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS|14 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Static Moments and Moments of Inertia. Determining Coordinates of the Centre of Gravity|15 Videos
  • DIFFERENTIATION OF FUNCTIONS

    IA MARON|Exercise 2.7 (ADDITIONAL PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Integration of certain irrational functions with the aid of trigonometric or hyperbolic substitutions I=int(dx)/((1+sqrt(x))sqrt(x-x^(2))).

Integration of trigonometric and hyperbolic functions I= int(sin^(2)x)/(cos^(6)x)dx .

Integration of trigonometric and hyperbolic functions I=int(cos^(3)x)/(sin^(6)x)dx.

Integration of trigonometric and hyperbolic functions I=intcosh^(2)x dx.

Integration of trigonometric and hyperbolic functions I=int(dx)/(cos^(4)x).

Integration of trigonometric and hyperbolic functions I=intcosh^(3) x dx.

Integration of trigonometric and hyperbolic functions I=int(2tanx+3)/(sin^(2)x+2cos^(2)x)dx.