Home
Class 12
MATHS
Compute the limit A = underset(n rarr oo...

Compute the limit `A = underset(n rarr oo)("lim") (root(n)(n!))/(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To compute the limit \( A = \lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} \), we can follow these steps: ### Step 1: Rewrite the Limit We start with the expression for \( A \): \[ A = \lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} \] This can be rewritten as: \[ A = \lim_{n \to \infty} \frac{(n!)^{1/n}}{n} \] ### Step 2: Apply the Logarithm To simplify the limit, we take the natural logarithm: \[ \log A = \lim_{n \to \infty} \left( \frac{1}{n} \log(n!) - \log n \right) \] ### Step 3: Use Stirling's Approximation Using Stirling's approximation, we know that: \[ n! \sim \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \] Taking the logarithm gives: \[ \log(n!) \sim \frac{1}{2} \log(2 \pi n) + n \log n - n \] Thus, we can write: \[ \frac{1}{n} \log(n!) \sim \frac{1}{2n} \log(2 \pi n) + \log n - 1 \] ### Step 4: Substitute Back into the Limit Substituting this back into our expression for \( \log A \): \[ \log A = \lim_{n \to \infty} \left( \frac{1}{2n} \log(2 \pi n) + \log n - 1 - \log n \right) \] This simplifies to: \[ \log A = \lim_{n \to \infty} \left( \frac{1}{2n} \log(2 \pi n) - 1 \right) \] ### Step 5: Evaluate the Limit As \( n \to \infty \), \( \frac{1}{2n} \log(2 \pi n) \) approaches 0. Therefore: \[ \log A = 0 - 1 = -1 \] ### Step 6: Exponentiate to Find \( A \) Exponentiating both sides gives: \[ A = e^{-1} = \frac{1}{e} \] ### Final Answer Thus, the limit is: \[ A = \frac{1}{e} \] ---
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Finding Average Values of a Function|15 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Areas in Rectangular Coordinates|25 Videos
  • APPLICATIONS OF THE DEFINITE INTEGRAL

    IA MARON|Exercise Computing Static Moments and Moments of Inertia. Determining Coordinates of the Centre of Gravity|15 Videos
  • APPLICATION OF DIFFERENTIAL CALCULUS TO INVESTIGATION OF FUNCTIONS

    IA MARON|Exercise ADDITIONAL PROBLEMS|9 Videos
  • BASIC CLASSES OF INTEGRABLE FUNCTIONS

    IA MARON|Exercise 5.8 INTEGRATION OF OTHER TRANSCENDENTAL FUNCTIONS|5 Videos

Similar Questions

Explore conceptually related problems

underset( n rarr oo) ( "Lim") ( -3n + (-1)^(n))/(4n-(-1)^(n)) is

Compute underset(n rarr oo)("lim")(pi)/(n)| "sin"(pi)/(n) + "sin"(2pi)/(n)+ ….+ "sin"((n-1)pi)/(n)|

lim_ (n rarr oo) ((root (3) (n!)) / (n)) is equal to

Prove that underset( n rarr oo)lim x_(n)=1, if x_(n)=(3^(n)+1)/3^(n) .

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo)(pi n)^(2/n) =

lim_(n rarr oo)(n!)/((n+1)!-n!)

Find underset( n rarr oo) ("lim") (sqrt( n^(2) + 1)+ sqrt( n ) )/( sqrt( n ^(2) + 1)- sqrt( n ) )