Home
Class 12
CHEMISTRY
For the cell, Pt|Cl(2)(g, 0.4" bar")|Cl^...

For the cell, `Pt|Cl_(2)(g, 0.4" bar")|Cl^(-)(aq, 0.1M)||Cl^(-)(aq, 0.01M)|Cl_(2)(g,0.2"bar")|Pt`
The measured potential at 298 K is __________ V. [Use `(2.303RT)/(F)=0.0591`]

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the measured potential of the given electrochemical cell, we will follow these steps: ### Step 1: Identify the half-reactions The half-reactions for the cell are: - **Anode (oxidation)**: \( 2 \text{Cl}^- \rightarrow \text{Cl}_2 + 2 \text{e}^- \) - **Cathode (reduction)**: \( \text{Cl}_2 + 2 \text{e}^- \rightarrow 2 \text{Cl}^- \) ### Step 2: Write the overall cell reaction Combining the half-reactions, we get the overall cell reaction: \[ \text{Cl}_2(g) + 2 \text{Cl}^- \rightarrow 2 \text{Cl}^- + \text{Cl}_2(g) \] This shows that the same species is both oxidized and reduced, indicating that this is a concentration cell. ### Step 3: Determine the standard cell potential \( E^\circ \) Since both half-reactions involve the same species, the standard cell potential \( E^\circ \) is zero: \[ E^\circ_{\text{cell}} = 0 \, \text{V} \] ### Step 4: Use the Nernst equation The Nernst equation is given by: \[ E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.0591}{n} \log \left( \frac{[\text{Cl}^-]_{\text{cathode}}^2 \cdot P_{\text{Cl}_2, \text{anode}}}{[\text{Cl}^-]_{\text{anode}}^2 \cdot P_{\text{Cl}_2, \text{cathode}}} \right) \] ### Step 5: Identify the concentrations and pressures From the problem: - \( [\text{Cl}^-]_{\text{anode}} = 0.1 \, \text{M} \) - \( [\text{Cl}^-]_{\text{cathode}} = 0.01 \, \text{M} \) - \( P_{\text{Cl}_2, \text{anode}} = 0.4 \, \text{bar} \) - \( P_{\text{Cl}_2, \text{cathode}} = 0.2 \, \text{bar} \) - Number of electrons \( n = 2 \) ### Step 6: Substitute values into the Nernst equation Substituting the values into the Nernst equation: \[ E_{\text{cell}} = 0 - \frac{0.0591}{2} \log \left( \frac{(0.01)^2 \cdot 0.4}{(0.1)^2 \cdot 0.2} \right) \] ### Step 7: Simplify the logarithmic expression Calculating the argument of the logarithm: \[ \frac{(0.01)^2 \cdot 0.4}{(0.1)^2 \cdot 0.2} = \frac{0.0001 \cdot 0.4}{0.01 \cdot 0.2} = \frac{0.00004}{0.0002} = 0.2 \] Now, substituting this back into the equation: \[ E_{\text{cell}} = -\frac{0.0591}{2} \log(0.2) \] ### Step 8: Calculate the logarithm Using \( \log(0.2) \approx -0.699 \): \[ E_{\text{cell}} = -\frac{0.0591}{2} \cdot (-0.699) = \frac{0.0591 \cdot 0.699}{2} \] Calculating this gives: \[ E_{\text{cell}} \approx \frac{0.0412}{2} \approx 0.0206 \, \text{V} \] ### Step 9: Final calculation Now, we can finalize: \[ E_{\text{cell}} \approx 0.0206 \, \text{V} \] ### Conclusion The measured potential at 298 K is approximately **0.0206 V**.

To calculate the measured potential of the given electrochemical cell, we will follow these steps: ### Step 1: Identify the half-reactions The half-reactions for the cell are: - **Anode (oxidation)**: \( 2 \text{Cl}^- \rightarrow \text{Cl}_2 + 2 \text{e}^- \) - **Cathode (reduction)**: \( \text{Cl}_2 + 2 \text{e}^- \rightarrow 2 \text{Cl}^- \) ### Step 2: Write the overall cell reaction ...
Promotional Banner

Similar Questions

Explore conceptually related problems

For the cell, Pt|Cl_2(g,0.4"bar")|Cl^(-)(aq,0.1M)"||"Cl^(-)(aq),0.01M)|Cl_2(g,0.2"bar")|pt

For the cell Cu (s) | Cu ^(2+) (aq) (0.1 M) || Ag ^(+) (aq) (0.01 M) | Ag (s) the cell potential E _(1) = 0.3095 V For the cell Cu (s) | Cu ^(+2) (aq) (0.01 M) || Ag ^(+) (aq)( 0. 001 M) | Ag (s) the cell potential = _______ xx 10 ^(-2) V. (Round off the Nearest Integer). [Use : (2.303 RT)/(F) =0.059 ]

The EMF of the cell Pt,Cl_(2(g))(P_(1)atm)|Cl_((aq))^(-)(1M)|Cl_(2(g)))P_(2)Atm) , Pt will be positive when :

The value of the reaction quotient, Q, for the cell: Ni(s)|Ni^(2+)(0.9M)||Cl^(-)(0.40M)|Cl_(2)(g0.10"atm"),Pt(s) is

The cell reaction for the given cell is spontaneoous if: Pt|Cl_(2)(P_1)|Cl^(-)(1M)||Cl^(-)(1M)|Pt|Cl_(2)(P_2)

Pt(s), H_(2)(g) |HCl(C_(1))||HCl(C_(2)|H_(2),Pt(s) The emf of cell is at 298 K : ((2.303RT)/(F) = 0.6V)) [log_(2)=0.3]

Select the correct cell reaction of the cell Pt(s)|Cl_2(g)|Cl^(-)(aq)"||"Ag^+(aq)|Ag(s) :