Home
Class 12
MATHS
Let alpha, beta be two real roots...

Let ` alpha, beta ` be two real roots of the equation ` cot ^ 2 x - 2 lamda cot x + 3 = 0 , lamda in R ` . If ` cot ( alpha + beta ) = (1)/(2)` , then value of ` lamda ` is :

A

1

B

2

C

`1/2`

D

`3/2`

Text Solution

Verified by Experts

The correct Answer is:
B


`tan alpha + tan beta =(2lambda)/3 , tan alpha tan beta = 1/3`
`therefore cot (alpha+beta)=1/2 rArr (tan alpha + tan beta)/(1-tan alpha tan beta)=2`
`rArr ((2lambda)/3)/(1-1/3)=2 rArr lambda=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha and beta be two real roots of the equation 5 cot ^(2) x- 3 cot x-1=0, then cot ^(2)(alpha + beta)=

If: cot^(-1)alpha + cot^(-1)beta = cot^(-1) x , then: x=

Let alpha, beta are the two real roots of equation x ^(2) + px +q=0, p, q in R, q ne 0. If the quadratic equation g (x)=0 has two roots alpha + (1)/(alpha), beta + (1)/(beta) such that sum of roots is equal to product of roots, then the complete range of q is:

Let alpha and beta be the roots of x^(2)+x+1=0 , then the equation whose roots are alpha^(2020) and beta^(2020) is

Let alpha and beta be the roots of the equation x^(2) + x + 1 = 0 . Then, for y ne 0 in R. |{:(y+1, alpha,beta), (alpha, y+beta, 1),(beta, 1, y+alpha):}| is

If alpha,beta are the roots of the equation cot^(-1)x-cot^(-1)(x+2)=15^(@) then the value of -(alpha+beta) is