Home
Class 12
MATHS
The value of the integral underset(0)o...

The value of the integral ` underset(0)overset(1)int cot^(-1) (1-x+x^(2))dx`, is

A

`(pi)/2+In2`

B

`(pi)/2-In2`

C

`pi-In2`

D

`pi+In2`

Text Solution

Verified by Experts

The correct Answer is:
B

`int_(0)^(1) cot^(-1) (1- x + x^(2)) dx = int_(0)^(1) tan^(-1) .(1)/(1-x(1-x))dx`
`=int_(0)^(1) {tan^(-1) x + tan^(-1)(1-x)} dx = 2 int_(0)^(1) tan^(-1) x dx`
` = 2 { x tan^(-1) x - (1)/(2) In (x^(2) + 1)}_(0)^(1) = 2 ((pi)/(4) - (In2)/(2)) = (pi)/(2) - In 2`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)cot^(-1)(1-x+x^(2))dx

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

" 1) "int(cot^(-1)x)/(1+x^(2))dx=

The value of the integral int_(0)^(1) cot^(-1) (1-x+x^(2))dx , is

Evaluate the following definite integrals underset(0)overset(1)int(dx)/(sqrt(1-x^(2)))

The value of the integral int_(0)^(1) x(1-x)^(n)dx , is