Home
Class 12
MATHS
If x^(2)+y^(2)+siny=4 then the value of ...

If `x^(2)+y^(2)+siny=4` then the value of `|(d^(2)y)/(dx^(2))|` at point (-2,0) is ……………..

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(|\frac{d^2y}{dx^2}|\) at the point \((-2, 0)\) given the equation \(x^2 + y^2 + \sin y = 4\), we will follow these steps: ### Step 1: Differentiate the given equation We start with the equation: \[ x^2 + y^2 + \sin y = 4 \] Differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) + \frac{d}{dx}(\sin y) = \frac{d}{dx}(4) \] This gives us: \[ 2x + 2y \frac{dy}{dx} + \cos y \frac{dy}{dx} = 0 \] ### Step 2: Rearrange the equation Rearranging the equation, we have: \[ 2x + (2y + \cos y) \frac{dy}{dx} = 0 \] From this, we can express \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = -\frac{2x}{2y + \cos y} \] ### Step 3: Evaluate \(\frac{dy}{dx}\) at the point \((-2, 0)\) Substituting \(x = -2\) and \(y = 0\): \[ \frac{dy}{dx} = -\frac{2(-2)}{2(0) + \cos(0)} = -\frac{-4}{1} = 4 \] ### Step 4: Differentiate again to find \(\frac{d^2y}{dx^2}\) Now we differentiate the expression for \(\frac{dy}{dx}\) again: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{2x}{2y + \cos y}\right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(2y + \cos y)(-2) - (-2x)(\frac{d}{dx}(2y + \cos y))}{(2y + \cos y)^2} \] ### Step 5: Compute \(\frac{d}{dx}(2y + \cos y)\) Using the chain rule: \[ \frac{d}{dx}(2y + \cos y) = 2\frac{dy}{dx} - \sin y \frac{dy}{dx} \] Substituting \(\frac{dy}{dx} = 4\) and \(y = 0\): \[ \frac{d}{dx}(2y + \cos y) = 2(4) - \sin(0)(4) = 8 \] ### Step 6: Substitute back into the second derivative Now substituting back: \[ \frac{d^2y}{dx^2} = \frac{(1)(-2) - (-2)(8)}{(1)^2} = -2 + 16 = 14 \] ### Step 7: Find the absolute value Finally, we need the absolute value: \[ |\frac{d^2y}{dx^2}| = |14| = 14 \] ### Final Answer The value of \(|\frac{d^2y}{dx^2}|\) at the point \((-2, 0)\) is: \[ \boxed{14} \]

To find the value of \(|\frac{d^2y}{dx^2}|\) at the point \((-2, 0)\) given the equation \(x^2 + y^2 + \sin y = 4\), we will follow these steps: ### Step 1: Differentiate the given equation We start with the equation: \[ x^2 + y^2 + \sin y = 4 \] Differentiate both sides with respect to \(x\): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)+sin y=4 then the value of (d^(2)y)/(dx^(2)) at the point (-2 0) is:

The value of (d^(2)y)/(dx^(2)) at the point where t=0 is

If x ^ 2 + y^ 2 + sin y = 4 , then the value of | (d^ 2 y ) /( dx ^ 2 ) | at point ( -2, 0 ) is …..

If e^y+xy=e then the value of (d^2y)/(dx^2) for x=0 is

IF y=(1)/(1+x+x^(2)+x^(3)), then value of (d^(2)y)/(dx^(2)) at x=0 is

If sqrt(x+y)+sqrt(y-x)=2 , then the value of (d^(2)y)/(dx^(2)) is equal to

If y=sin(m sin^(-1)x) . then what is the value of d^(2)y//dx^(2) at x=0 ?

If y ^(2) =3 cos ^(2)x+ 2 sin ^(2)x, then the value of y ^(4) +y^(3) (d^(2)y)/(dx ^(2)) is