Home
Class 12
MATHS
Let (1+x+x^(2))^(5)=a(0)+a(1)x+a(2)x^(2)...

Let `(1+x+x^(2))^(5)=a_(0)+a_(1)x+a_(2)x^(2)+…….+a_(10)x^(10)` then value of `a_(1)+a_(4)+a_(7)+a_(10)` is ……

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the coefficients \( a_1 + a_4 + a_7 + a_{10} \) from the expansion of \( (1 + x + x^2)^5 \). ### Step-by-step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 + x + x^2)^5 \). This can be expanded using the multinomial theorem, but we will use a different approach to find specific coefficients. 2. **Finding the Coefficients**: We can evaluate the expression at specific values of \( x \) to find the coefficients we need. The roots of the equation \( 1 + x + x^2 = 0 \) are the cube roots of unity, denoted as \( \omega \) and \( \omega^2 \), where \( \omega = e^{2\pi i / 3} \) and \( \omega^3 = 1 \). 3. **Substituting Values**: We will substitute \( x = 1 \), \( x = \omega \), and \( x = \omega^2 \) into the expression \( (1 + x + x^2)^5 \). - **Substituting \( x = 1 \)**: \[ (1 + 1 + 1^2)^5 = 3^5 = 243 \] This gives us the sum of all coefficients: \[ a_0 + a_1 + a_2 + \ldots + a_{10} = 243 \] - **Substituting \( x = \omega \)**: \[ (1 + \omega + \omega^2)^5 = 0^5 = 0 \] This gives us: \[ a_0 + a_1 \omega + a_2 \omega^2 + a_3 \omega^3 + a_4 \omega^4 + a_5 \omega^5 + a_6 \omega^6 + a_7 \omega^7 + a_8 \omega^8 + a_9 \omega^9 + a_{10} \omega^{10} = 0 \] Since \( \omega^3 = 1 \), we can simplify this to: \[ a_0 + a_1 \omega + a_2 \omega^2 + a_3 + a_4 \omega + a_5 \omega^2 + a_6 + a_7 \omega + a_8 \omega^2 + a_9 + a_{10} \omega = 0 \] - **Substituting \( x = \omega^2 \)**: \[ (1 + \omega^2 + \omega)^5 = 0^5 = 0 \] This gives us: \[ a_0 + a_1 \omega^2 + a_2 \omega + a_3 + a_4 \omega^2 + a_5 \omega + a_6 + a_7 \omega^2 + a_8 \omega + a_9 + a_{10} \omega^2 = 0 \] 4. **Setting Up the System of Equations**: We now have three equations: - \( a_0 + a_1 + a_2 + \ldots + a_{10} = 243 \) (Equation 1) - \( a_0 + a_3 + a_6 + a_9 + (a_1 + a_4 + a_7 + a_{10}) \omega + (a_2 + a_5 + a_8) \omega^2 = 0 \) (Equation 2) - \( a_0 + a_3 + a_6 + a_9 + (a_2 + a_5 + a_8) \omega + (a_1 + a_4 + a_7 + a_{10}) \omega^2 = 0 \) (Equation 3) 5. **Solving the Equations**: From Equations 2 and 3, we can isolate \( a_1 + a_4 + a_7 + a_{10} \) and \( a_2 + a_5 + a_8 \) and set up a system to solve for these sums. Adding Equations 2 and 3 gives: \[ 2(a_0 + a_3 + a_6 + a_9) + (a_1 + a_4 + a_7 + a_{10} + a_2 + a_5 + a_8)(\omega + \omega^2) = 0 \] Since \( \omega + \omega^2 = -1 \): \[ 2(a_0 + a_3 + a_6 + a_9) - (a_1 + a_4 + a_7 + a_{10} + a_2 + a_5 + a_8) = 0 \] 6. **Final Calculation**: We can express \( a_1 + a_4 + a_7 + a_{10} \) in terms of \( a_0 + a_3 + a_6 + a_9 \): \[ a_1 + a_4 + a_7 + a_{10} = 243 - (a_0 + a_3 + a_6 + a_9) \] Since \( a_0 + a_3 + a_6 + a_9 \) can be calculated from the previous equations, we find: \[ a_1 + a_4 + a_7 + a_{10} = \frac{243}{3} = 81 \] Thus, the value of \( a_1 + a_4 + a_7 + a_{10} \) is **81**.

To solve the problem, we need to find the coefficients \( a_1 + a_4 + a_7 + a_{10} \) from the expansion of \( (1 + x + x^2)^5 \). ### Step-by-step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 + x + x^2)^5 \). This can be expanded using the multinomial theorem, but we will use a different approach to find specific coefficients. 2. **Finding the Coefficients**: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(18)x^(18)

If (1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+……………..a_(50)x^(50) then the value of a_(0)+a_(2)+a_(4)+…………+a_(50) is

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1-x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)++a_(2n)x^(2n) find the value of a_(0)+a_(2)+a_(4)++a_(2n)

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+……+a_(20)x^(20) , then a_(1) equals :

If (1 + x + x^(2))^(48) = a_(0) + a_(1) x + a_(2) x^(2) + ... + a_(96) x^(96) , then value of a_(0) - a_(2) + a_(4) - a_(6) + … + a_(96) is

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of (a_(39))/(a_(40)) , is