Home
Class 12
MATHS
If A = [(1,2),(3,4)], then 2A^(-1)=...

If `A = [(1,2),(3,4)]`, then `2A^(-1)=`

A

`3I-A`

B

`5I-A`

C

`A-5I`

D

`3A+I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( 2A^{-1} \) where \( A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \), we will follow these steps: ### Step 1: Find the determinant of matrix A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): \[ \text{det}(A) = (1)(4) - (2)(3) = 4 - 6 = -2 \] ### Step 2: Find the inverse of matrix A The inverse of a 2x2 matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Substituting the values from our matrix \( A \): \[ A^{-1} = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} \] ### Step 3: Multiply the inverse by 2 Now we need to calculate \( 2A^{-1} \): \[ 2A^{-1} = 2 \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 2 \cdot -2 & 2 \cdot 1 \\ 2 \cdot \frac{3}{2} & 2 \cdot -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} -4 & 2 \\ 3 & -1 \end{pmatrix} \] ### Final Answer: \[ 2A^{-1} = \begin{pmatrix} -4 & 2 \\ 3 & -1 \end{pmatrix} \] ---

To solve the problem of finding \( 2A^{-1} \) where \( A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \), we will follow these steps: ### Step 1: Find the determinant of matrix A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(3,2,1),(0,-1,-2),(-3,4,2):}] , find A^(-1)

Find the value of A^2 if A= [(1,2,3),(4,3,2),(3,1,4)]

If A=[[1,-2,3],[0,-1,4],[-2,2,1]], then find |A| .

Verify that A(B+C)=(AB+AC), when (i) A=[{:(1,2),(3,4):}],B=[{:(2," "0),(1,-3):}]" and "C=[{:(1,-1),(0," "1):}]. (ii) A=[{:(2,3),(-1,4),(0,1):}],B=[{:(5,-3),(2," "1):}]" and "C=[{:(-1,2),(" "3,4):}].

If R is the smallest equivalence relation on the set {1, 2, 3, 4} such that {(1,2), (1,3)}sub R , then the number of elements in R is ______

The equation of the plane passing through the points (1,2,3), (-1,4,2) and (3,1,1) is

If A{:[(1,2,3,5,6),(4,-1,2,-3,1)]:}andB={:[(5,3),(2,1),(-3,5),(4,1),(1,2)]:} , then find AB and BA.

Verify : A(adj.A)=(adj.A)A=|A|I when : A=[{:(2,1,5),(3,-2,-4),(-3,1,-2):}]

The rank of the matrix A={:[(1,2,3,4),(4,3,2,1)]:} , is