Home
Class 12
MATHS
Value of sum(k = 1)^(100)(i^(k!) + omega...

Value of `sum_(k = 1)^(100)(i^(k!) + omega^(k!))`, where i = `sqrt(-1) and omega` is complex cube root of unity , is :

A

`190+omega`

B

`192+omega^(2)`

C

`190+i`

D

`192+i`

Text Solution

Verified by Experts

The correct Answer is:
D

`sum_(k=1)^(100) i^(k!) + sum_(k=1)^(100) omega^(k!)`
` sum_(k=1)^(100) i^(k!) = i^(1!) + i^(2!) + i^(3!) + i^(4!) + ……. i^(100!)`
` =i-1 + i^(6) + 1+1 +1 + …….. +1`
`=i-2 + 97 = i + 95`.
` sum_(k=1)^(100) omega^(k!) = omega^(1!) + omega^(2!) + omega^(3!) + omega^(4!) + ......... omega^(100!)`
` = omega + omega^(2) + 1 + 1 +1 + .......... + 1 = 97`
sum = i + 95 + 97 = i + 192
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of Sigma_(k=1)^(99)(i^(k!)+omega^(k!)) is (where, i=sqrt(-1) amd omega is non - real cube root of unity)

The area of the triangle (in square units) whose vertices are i , omega and omega^(2) where i=sqrt(-1) and omega, omega^(2) are complex cube roots of unity, is

(1)/(a + omega) + (1)/(b+omega) +(1)/(c + omega) + (1)/(d + omega) =(1)/(omega) where, a,b,c,d, in R and omega is a complex cube root of unity then find the value of sum (1)/(a^(2)-a+1)

What is omega^(100)+omega^(200)+omega^(300) equal to, where omega is the cube root of unity?

" Let "f(x)=int_(x)^(x^2)(t-1)dt" .Then the value of "|f'(omega)|" where "omega" is a complex cube root of unity is "

Find the value of w^4+w^6+w^8 , if w is a complex cube root of unity.

Find the value of |{:(" "1+i," "i omega," "i omega^(2)),(" "i omega," "i omega^(2)+1," "i omega^(3)),(i omega^(2), i omega^(3), " "i omega^(4)+1):}| , where omega is a non real cube root of unity and i = sqrt(-1) .