Home
Class 12
MATHS
If the value of the sum n^(2) + n - sum...

If the value of the sum `n^(2) + n - sum_(k = 1)^(n) (2k^(3)+ 8k^(2) + 6k - 1)/(k^(2) + 4k + 3)` as n tends to infinity can be expressed in the form `(p)/(q)` find the least value of (p + q) where p, q `in N`

Text Solution

Verified by Experts

The correct Answer is:
`0017`

Consider
`sum_(k=1)^(n)(2k(k^(2) + 4k+3)-1)/(k^(2) + 4k+3) = sum(2k) -(1)/((k+1)(k+3))`
` =2sum k-(1)/(2) sum((1)/(k+1)-(1)/(k+3))`
`=(2(n)(n-1))/(2)(1)/(2)[(1)/(2) + (1)/(3)] = n^(2) +n-underset(n to oo)ubrace((1)/(2)[(1)/(2) + (1)/(3)])`
Hence , Sum ` =(n^(2) + n) -(n^(2) + n-(5)/(12)) =(5)/(12)`
`implies p=5, q=12 " "implies (p+q) = 17`
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_ (k = 1) ^ (n) (2 ^ (k) + 3 ^ (k-1))

The value of cot (sum_(n=1)^(23) cot^(-1) (1 + sum_(k=1)^(n) 2k)) is

The value of lim _( x to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

lim_ (n rarr oo) sum_ (k = 1) ^ (n) (k) / (n ^ (2) + k ^ (2)) is equals to

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

lim_ (n rarr oo) sum_ (k = 1) ^ (n) (k + 1) / ((2k + 1) ^ (2) (2k + 3) ^ (2)) equals

Evaluate the sum , sum_(k=1)^(n)(1)/(k(k+1)(k+2)……..(k+r)) .