Home
Class 12
MATHS
Unit vector vecc is inclined at an ang...

Unit vector `vecc` is inclined at an angle `theta` to unit vectors `veca and vecb` which are perpendicular.
If `vecc=lambda(veca+vecb)+mu(veca xx vecb), lambda, mu` real, then `theta` belongs to:

A

`(-(pi)/(4),0)`

B

`[0,(pi)/(4))`

C

`[(3pi)/(4),pi)`

D

`[(pi)/(4),(3pi)/(4)]`

Text Solution

Verified by Experts

The correct Answer is:
D

`veca.vecb=0 " " , vecc.veca= vecc.vecb=cos theta`
`vecc.veca= lambda(veca.veca.+veca.vecb)+muvec.(vecaxxvecb)`
`cos theta=lambda`
`vecc.vecc=lambda^(2)(veca+vecb)^(2)=mu^(2)(1*1 sin90^(@))+2lambdamu{(veca+vecb)*(vecaxxvecb)}`
`1=lambda^(2))1+1+2*0)+mu^(2)+2lambda (0)`
`1=cos^(2) theta+mu^(2), " " mu^(2)=1-2 cos^(2) theta ge0`
`-(1)/(sqrt(2)) le cos theta le(1)/(sqrt(2)), " " theta in [(pi)/(4),(3pi)/(4)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

Unit vectors veca and vecb ar perpendicular , and unit vector vecc is inclined at an angle theta to both veca and vecb . If alpha veca + beta vecb + gamma (veca xx vecb) then.

If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vecc).(vecb+vecc)=0 and vecc=lambdaveca+muvecb+omega(veca xx vecb) , where lambda, mu, omega are scalars, then

Let veca.vecb=0 where veca and vecb are unit vectors and the vector vecc is inclined an anlge theta to both veca and vecb. If vecc=mveca+nvecb + p(veca xx vecb) , (m,n,p in R) then

The unit vector veca and vecb are perpendicular, and the unit vector vecc is inclined at an angle theta to both veca and vecb . If vecc=alpha veca+betavecb+gamma(vecaxxvecb) , then which one of the following is incorrect?

Let veca and vecb be two mutually perpendicular unit vectors and vecc be a unit vector inclned at an angle theta to both veca and vecb . If vecc=xveca+xvecb+y(vecaxxvecb) , where x,yepsilonR , then the exhaustive range of theta is

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

The vector (veca.vecb)vecc-(veca.vecc)vecb is perpendicular to

veca and vecc are unit collinear vectors and |vecb|=6 , then vecb-3vecc = lambda veca , if lambda is: