Home
Class 12
MATHS
If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1...

If `f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x)))` where `x in (0, 1/2)` , then `f'(x)` has the value equal to (i) `2/(xsqrt(1-x))` (ii) `0` (iii) `-2/(xsqrt(1-x))` (iv) `pi`

A

`(2)/(sqrt(x(-1)))`

B

Zero

C

`-(2)/(sqrt(x(-1)))`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
B

f(x) simplifies to `pi`
`rArr f.(x)=0`
or directly differentiate f (x) to get zero
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin^(-1)(2xsqrt(1-x^(2))), x in [-1,1] . Then

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

sin^-1[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]

The value of x for which 2 sin^(-1)x =sin^(-1)(2xsqrt(1-x^(2))) is

Let f(x)=sin^(-1){xsqrt(1-x)-sqrt(x(1-x^(2))}}, AA 0le xle1 then f(x) is

If -1 le x le -(1)/sqrt(2) then sin^(-1)2xsqrt(1-x^(2)) equals

(i) int 1/(xsqrt(x-1))dx (ii) int 1/((x+2)sqrt(x+3)) dx

int(1)/(cos^(-1)x.sqrt(1-x^(2)))dx=

Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1) (2 sqrt(x - x^(2))) is constant