Home
Class 12
MATHS
If t=(1^(2)+2^(2)+3^(2)+...r^(2))/(1^(3)...

If `t=(1^(2)+2^(2)+3^(2)+...r^(2))/(1^(3)+2^(3)+3^(3)+....+r^(3)), S_(n) = overset(n) underset(r=1) sum(-1)^(r)t_(r)` then `lim_(n to oo) ((1)/(3)-S_(n))=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit \( \lim_{n \to \infty} \left( \frac{1}{3} - S_n \right) \), where \( S_n = \sum_{r=1}^{n} (-1)^r t_r \) and \( t_r = \frac{1^2 + 2^2 + 3^2 + \ldots + r^2}{1^3 + 2^3 + 3^3 + \ldots + r^3} \). ### Step 1: Calculate \( t_r \) The formula for the sum of squares of the first \( r \) natural numbers is: \[ 1^2 + 2^2 + 3^2 + \ldots + r^2 = \frac{r(r+1)(2r+1)}{6} \] The formula for the sum of cubes of the first \( r \) natural numbers is: \[ 1^3 + 2^3 + 3^3 + \ldots + r^3 = \left( \frac{r(r+1)}{2} \right)^2 \] Thus, we can express \( t_r \) as: \[ t_r = \frac{\frac{r(r+1)(2r+1)}{6}}{\left( \frac{r(r+1)}{2} \right)^2} \] ### Step 2: Simplify \( t_r \) Now we simplify \( t_r \): \[ t_r = \frac{r(r+1)(2r+1)}{6} \cdot \frac{4}{r^2(r+1)^2} \] This simplifies to: \[ t_r = \frac{4(2r+1)}{6r(r+1)} = \frac{2(2r+1)}{3r(r+1)} \] ### Step 3: Calculate \( S_n \) Now we substitute \( t_r \) into \( S_n \): \[ S_n = \sum_{r=1}^{n} (-1)^r t_r = \sum_{r=1}^{n} (-1)^r \frac{2(2r+1)}{3r(r+1)} \] This can be rewritten as: \[ S_n = \frac{2}{3} \sum_{r=1}^{n} (-1)^r \frac{2r+1}{r(r+1)} \] ### Step 4: Simplify the summation The term \( \frac{2r+1}{r(r+1)} \) can be split: \[ \frac{2r+1}{r(r+1)} = \frac{2}{r} - \frac{1}{r+1} \] Thus: \[ S_n = \frac{2}{3} \sum_{r=1}^{n} (-1)^r \left( \frac{2}{r} - \frac{1}{r+1} \right) \] ### Step 5: Evaluate the limit As \( n \to \infty \), the series converges. The alternating series converges to a limit. We can analyze the behavior: \[ \lim_{n \to \infty} S_n = \frac{2}{3} \left( \sum_{r=1}^{\infty} (-1)^r \frac{2}{r} - \sum_{r=1}^{\infty} (-1)^r \frac{1}{r+1} \right) \] The first series converges to \( -\ln(2) \) and the second series converges to \( -\ln(2) + 1 \). Thus: \[ \lim_{n \to \infty} S_n = \frac{2}{3} \left( -\ln(2) - (-\ln(2) + 1) \right) = \frac{2}{3} \cdot 1 = \frac{2}{3} \] ### Step 6: Final limit calculation Finally, we compute: \[ \lim_{n \to \infty} \left( \frac{1}{3} - S_n \right) = \frac{1}{3} - \frac{2}{3} = -\frac{1}{3} \] ### Final Answer \[ \lim_{n \to \infty} \left( \frac{1}{3} - S_n \right) = -\frac{1}{3} \]

To solve the problem, we need to find the limit \( \lim_{n \to \infty} \left( \frac{1}{3} - S_n \right) \), where \( S_n = \sum_{r=1}^{n} (-1)^r t_r \) and \( t_r = \frac{1^2 + 2^2 + 3^2 + \ldots + r^2}{1^3 + 2^3 + 3^3 + \ldots + r^3} \). ### Step 1: Calculate \( t_r \) The formula for the sum of squares of the first \( r \) natural numbers is: \[ 1^2 + 2^2 + 3^2 + \ldots + r^2 = \frac{r(r+1)(2r+1)}{6} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If t_(r)=(1^(2)+2^(2)+3^(2)+….+r^(2))/(1^(3)+2^(3)+3^(3)+…+r^(3)), S_(n)=sum_(r=1)^(n)(-1)^(r)t_(r) , then lim_(nrarroo)((1)/(3-S_(n)))=

Find sum_(r=1)^(n)(1^(2)+2^(2)+3^(3)+...+r^(2))/(r+1)

If S_(1)= sum_(r=1)^(n) r , S_(2) = sum_(r=1)^(n) r^(2),S_(3) = sum_(r=1)^(n)r^(3) then : lim_(n to oo ) (S_(1)(1+(S_(8))/8))/((S_(2))^(2)) =

If sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (2008)/(T_(r))=

lim_(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+....+(1)/(2n))

lim_(n rarr oo)(1)/(n^(4))sum_(r=1)^(n)r^(3)=

If (1)/(1^(3))+(1+2)/(1^(3)+2^(3))+(1+2+3)/(1^(3)+2^(3)+3^(3))+......n terms then lim_(n rarr oo)[S_(n)]