Home
Class 12
MATHS
int(a^4)^(b^4)(f(sqrtx))/((sqrtx)[f(a^2+...

`int_(a^4)^(b^4)(f(sqrtx))/((sqrtx)[f(a^2+b^2-sqrtx)+f(sqrtx)])dx` is equal to

A

`a^(2)-b^(2)`

B

`b^(2)-a^(2)`

C

0

D

`a^(2)+b^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `sqrtx=t" also "(1)/(2sqrtx)dx=dt" "rArr" "x=t^(2)`
`"When "x=a^(4)" "rArr" "t=a^(2)," "x=b^(4)rArr t=b^(2)`
`rArr" "I=2 int_(a^(2))^(b^(2))(f(t))/((f(a^(2)+b^(2)-t)+f(t)))dt" (1)"`
`rArr" "I=2 int_(a^(2))^(b^(2))(f(a^(2)+b^(2)-t))/(f(t)+f(a^(2)+b^(2)-t))dt" (2)"`
`"Adding "2I=2 int_(a^(2))^(b^(2))dt" "I=(b^(2)-a^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(logsqrtx)/(3sqrtx)dx is equal to

f(x)=sqrtx-(1)/(sqrtx)

int (cossqrtx)/(sqrtx)dx

int(sec sqrtx)/(sqrtx)dx=

int _(4) ^(9) (dx)/(sqrtx) =

inte^(sqrtx)dx

int(1)/((1+sqrtx)sqrt(x-x^(2)))dx is equal to

(d)/(dx)(sqrtx+(1)/(sqrtx))^2=