Home
Class 12
MATHS
lim(x->e) (lnx-1)/(x-e)...

`lim_(x->e) (lnx-1)/(x-e)`

A

e

B

`(1)/(e)`

C

`e^(2)`

D

`(1)/(e^(2))`

Text Solution

Verified by Experts

The correct Answer is:
B

`(ln((x)/(e)))/(e((x)/(e)-1))," Let "(x)/(e)-1=t" "rArr underset(trarr0)(lim)(ln(1+t))/(et)=(1)/(e)`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)(e^(2x)-1)/(3x)

Lim_(x rarre)(log x-1)/(x-e)=

lim_(x rarr e)(log x-1)/(x-e)=(1)/(e)

Evaluate: (lim)_(x rarr e)(log x-1)/(x-e)

the value of lim_(x rarr e)(log x-1)/(x-e) equals to

Evaluate: ("Lim")_(x->1)(x^x-x)/(x-1-lnx)

lim_(xrarre) (log_(e)x-1)/(|x-e|) is

Using the L .Hospital rule find limits of the following functions : lim_(xto1) (a^(lnx)-x)/(lnx)

The value of lim_(x to 0) ((e^(x)-1)/(x)) is

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).