Home
Class 12
MATHS
If 1, omega, omega^(2) are the cube root...

If `1, omega, omega^(2)` are the cube roots of unity then `Delta=|(1,omega^(n),omega^(2n)),(omega^(n),omega^(2n),1),(omega^(2n),1,omega^(n))|=`

Text Solution

Verified by Experts

The correct Answer is:
0

`Delta=1[(omega^(3n)-1)+omega^(n)(omega^(2n)-omega^(2n))+omega^(2n)(omega^(n)-omega^(4n))`
`Delta=[(omega^(3))^(n)-1]+0+omega^(2n)[omega^(n)-(omega^(3))^(n).omega^(n)]," "Delta=1-1+0+omega^(2n)[omega^(n)-omega^(n)]=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If n ne 3k and 1 , omega , omega ^(2) are the cube roots of units , then Delta =Delta=|(1,omega^(n),omega^(2n)),(omega^(2n),1,omega^(n)),(omega^(n),omega^(2n),1)| has the value

If omega is a cube root of unity, then for polynomila is |(x + 1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)|

If 1,omega,omega^(2) are the cube roots of unity (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(5))....... to 2n factors

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =