Home
Class 12
MATHS
If g(x)=x^3+x-2 and g(f(x))=x^3+3x^2+4x ...

If `g(x)=x^3+x-2` and `g(f(x))=x^3+3x^2+4x` then f(1)+f(2) is equal to ________

Text Solution

Verified by Experts

The correct Answer is:
5

Obviously g is one - one
`g(f(1))=8 and g(2)=8`
`"So "f(1)=2`
`g(f(2))=28 and g(3)=28`
`"So "f(2)=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

If f(x) = 7x + 9 and g(x) = 7x^(2) - 3 , then (f - g)(x) is equal to

If g(x) = 2x^(2) + 3x - 4 and g (f(x)) = 8x^(2) + 14 x + 1 then f (2) =

If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

If f(x)=3x+1 and g(x)=x^(3)+2 then ((f+g)/(f*g))(0) is:

If f(x)=(x-2)^2 and g(x) =3x-3 then: (f@g)(2)=

If f(x)=x^(3)+2x^(2)+3x+4 and g(x) is the inverse of f(x) then g'(4) is equal to a.(1)/(4) b.0 c.(1)/(3) d.4