Home
Class 12
MATHS
Let vec(a) = hat(i) - 2hat(j) + 2hat(k) ...

Let `vec(a) = hat(i) - 2hat(j) + 2hat(k)` and `vec(b) = 2hat(i) - hat(j) + hat(k)` be two vectors. If `vec(c)` is a vector such that `vec(b) xx vec(c) = vec(b) xx vec(a)` and `vec(c).vec(a) = 1`, then `vec(c).vec(b)` is equal to :

A

1

B

`-1`

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\vec{c} \cdot \vec{b}\) given the conditions \(\vec{b} \times \vec{c} = \vec{b} \times \vec{a}\) and \(\vec{c} \cdot \vec{a} = 1\). ### Step 1: Write down the vectors Given: \[ \vec{a} = \hat{i} - 2\hat{j} + 2\hat{k} \] \[ \vec{b} = 2\hat{i} - \hat{j} + \hat{k} \] ### Step 2: Use the vector cross product condition From the condition \(\vec{b} \times \vec{c} = \vec{b} \times \vec{a}\), we can use the vector triple product identity: \[ \vec{b} \times \vec{c} = \vec{b} \times \vec{a} \implies \vec{c} \cdot \vec{a} = 1 \] ### Step 3: Apply the vector triple product identity Using the identity: \[ \vec{b} \times (\vec{c} - \vec{a}) = \vec{0} \] This implies that \(\vec{c} - \vec{a}\) is parallel to \(\vec{b}\). Therefore, we can express \(\vec{c}\) as: \[ \vec{c} = \vec{a} + k\vec{b} \] for some scalar \(k\). ### Step 4: Use the dot product condition Now, we use the condition \(\vec{c} \cdot \vec{a} = 1\): \[ (\vec{a} + k\vec{b}) \cdot \vec{a} = 1 \] Expanding this gives: \[ \vec{a} \cdot \vec{a} + k(\vec{b} \cdot \vec{a}) = 1 \] ### Step 5: Calculate \(\vec{a} \cdot \vec{a}\) and \(\vec{b} \cdot \vec{a}\) First, calculate \(\vec{a} \cdot \vec{a}\): \[ \vec{a} \cdot \vec{a} = 1^2 + (-2)^2 + 2^2 = 1 + 4 + 4 = 9 \] Next, calculate \(\vec{b} \cdot \vec{a}\): \[ \vec{b} \cdot \vec{a} = (2)(1) + (-1)(-2) + (1)(2) = 2 + 2 + 2 = 6 \] ### Step 6: Substitute back into the equation Substituting these values into the equation: \[ 9 + 6k = 1 \] Solving for \(k\): \[ 6k = 1 - 9 \implies 6k = -8 \implies k = -\frac{4}{3} \] ### Step 7: Find \(\vec{c}\) Now substitute \(k\) back into the expression for \(\vec{c}\): \[ \vec{c} = \vec{a} - \frac{4}{3}\vec{b} \] ### Step 8: Calculate \(\vec{c} \cdot \vec{b}\) Now we can find \(\vec{c} \cdot \vec{b}\): \[ \vec{c} \cdot \vec{b} = \left(\vec{a} - \frac{4}{3}\vec{b}\right) \cdot \vec{b} \] This expands to: \[ \vec{a} \cdot \vec{b} - \frac{4}{3}(\vec{b} \cdot \vec{b}) \] ### Step 9: Substitute known values We already calculated: \[ \vec{a} \cdot \vec{b} = 6 \] And we need \(\vec{b} \cdot \vec{b}\): \[ \vec{b} \cdot \vec{b} = 2^2 + (-1)^2 + 1^2 = 4 + 1 + 1 = 6 \] ### Step 10: Final calculation Substituting these values: \[ \vec{c} \cdot \vec{b} = 6 - \frac{4}{3}(6) = 6 - 8 = -2 \] Thus, the final answer is: \[ \vec{c} \cdot \vec{b} = -2 \]

To solve the problem, we need to find the value of \(\vec{c} \cdot \vec{b}\) given the conditions \(\vec{b} \times \vec{c} = \vec{b} \times \vec{a}\) and \(\vec{c} \cdot \vec{a} = 1\). ### Step 1: Write down the vectors Given: \[ \vec{a} = \hat{i} - 2\hat{j} + 2\hat{k} \] \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

Let vec(A) = 2hat(i) + hat(k), vec(B) = hat(i) + hat(j) + hat(k) and vec(C) = 4hat(i) - 3hat(j) + 7hat(k) . Determine a vector vec(R) satisfying vec(R) xx vec(B) = vec(C) xx vec(B) and vec(R).vec(A) = 0

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

Let vec(a)= hat(i) +hat(j)+2hat(k) and vec(b)= -hat(i) +2hat(j) +3hat(k) . Then the vector product (vec(a) +vec(b)) xx ((vec(a) xx ((vec(a)-vec(b)) xx vec(b))) xx vec(b)) is equal to

If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + hat(k) and vec(c )= hat(i) + hat(j) - hat(k) , then what is vec(a) xx (vec(b)+ vec(c )) + vec(b) xx (vec(c ) + vec(a)) + vec(c ) xx (vec(a) + vec(b)) is equal to ?

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

Let vec(A)=2hat(i)-3hat(j)+4hat(k) and vec(B)=4hat(i)+hat(j)+2hat(k) then |vec(A)xx vec(B)| is equal to

If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) then what is (vec(b)-vec(a)). (3vec(a)+vec(b)) equal to ?

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) and vec(c )= hat(j)-hat(k) be three vectors such that vec(a) xx vec(b)= vec(c ) and vec(a).vec(b)=1 . If the length of projection vector of the vector vec(b) on the vector vec(a) xx vec(c ) is l, then the vlaue of 3l^(2) is equal to ____