Home
Class 12
MATHS
If I underset(1)overset(2)(int)log(11)(d...

If `I underset(1)overset(2)(int)log_(11)(dx^3 - x^2 + 6x -5)` dx, then:

A

`0 lt I lt (1)/(2)`

B

`-1 lt I lt (1)/(2)`

C

`-1 lt I lt 0`

D

`0 lt I lt 1`

Text Solution

Verified by Experts

The correct Answer is:
D

`f(x) = log_(11) (x^3 - x^2 + 6x - 5)`
`therefore f(X)` is increasing in (1,2) therefore `0 lt f(x) lt 1`
`0 lt I lt 1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If I underset(1)overset(2)(int)log_(11)(x^3 - x^2 + 6x -5) dx, then:

underset(1)overset(e)int (e^(x))/(x) (1 + x log x)dx

underset1overset2int 3x^2dx =???

int log_(e)(1+x^(2))dx

int log_(e)(1+x^(2))dx

int log_(e)(1+x^(2))dx

int log_(e)(1+x^(2))dx

int log_(e)(1+x^(2))dx

int log_(e)(1+x^(2))dx

int log_(c)(1+x^(2))dx