Home
Class 12
MATHS
Let alpha=(-1+isqrt3)/2. If alpha =(1 +a...

Let `alpha=(-1+isqrt3)/2`. If `alpha =(1 +alpha^2)underset(k-0)overset(100)(Sigma)alpha^k` and `b = underset(k-0)overset(10)(Sigma)alpha^(6k)`, , then a and b are the roots of the quadratic equation :

A

`x^2 - 102 x+ 11 =0`

B

` x^2 + 12 x + 11=0`

C

`x^2 - 12 x -11=0`

D

`x^2 - 12 x +11=0`

Text Solution

Verified by Experts

The correct Answer is:
D

`alpha=omega," "a=(1+omega^2)(1+omega+omega^(2)+.......+omega^(100))`
`a=(1+omega^(2))((1(omega)^(101)))/(1-omega)=1`
`b=1+omega^(6)+omega^(12)+......+omega^(60)=11, " "x^(2)-12x+11=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha=(-1+isqrt3)/2 . If a =(1 +alpha^2)underset(k-0)overset(100)(Sigma)alpha^k and b = underset(k-0)overset(10)(Sigma)alpha^(6k) , , then a and b are the roots of the quadratic equation :

The value of cot[underset(n=1)overset(100)Sigmacot^(-1)(1+underset(k=1)overset(n)Sigma2k)] is

Let alpha=(-1+isqrt(3))/2 and a=(1+alpha)sum_(k=0)^(100) alpha^(2k),b=sum_(k=0)^(100) alpha^(3k) . If a and b are roots of quadratic equation then quadratic equation is

If underset(i=1)overset(n)sum cos^(-1) alpha_(i)=0," then "underset(i=1)overset(n)sum alpha_(i)=

If underset(r=1)overset(10)sum r! (r^(3)+6r^(2)+2r+5)=alpha (11!) , then the value of alpha is equal to .......

If alpha and beta are the roots of x^(2)+bx+c=0 and alpha+k and beta+k are the roots of x^(2)+qx+r=0 then k=

If alpha, beta are the roots of equation (k+1)x^(2)-(20k+14)x+91k+40=0,(alpha lt beta),k gt 0 , then the answer the following questions The nature of the roots of this equation is