Home
Class 12
MATHS
The sum sum(n=1)^(10) ( n(2n-1)(2n+1))/...

The sum ` sum_(n=1)^(10) ( n(2n-1)(2n+1))/( 5) ` is equal to _.

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum \[ S = \sum_{n=1}^{10} \frac{n(2n-1)(2n+1)}{5}, \] we can simplify the expression inside the summation first. ### Step 1: Simplifying the expression The term \( n(2n-1)(2n+1) \) can be expanded. We know that \( (2n-1)(2n+1) = 4n^2 - 1 \) (this is a difference of squares). Therefore, we can rewrite the term as: \[ n(2n-1)(2n+1) = n(4n^2 - 1) = 4n^3 - n. \] Thus, we can express the sum \( S \) as: \[ S = \frac{1}{5} \sum_{n=1}^{10} (4n^3 - n). \] ### Step 2: Separating the summation Now we can separate the summation: \[ S = \frac{1}{5} \left( 4 \sum_{n=1}^{10} n^3 - \sum_{n=1}^{10} n \right). \] ### Step 3: Using summation formulas We will use the formulas for the summation of the first \( n \) natural numbers and the summation of the cubes of the first \( n \) natural numbers: 1. The sum of the first \( n \) natural numbers is given by: \[ \sum_{k=1}^{n} k = \frac{n(n+1)}{2}. \] 2. The sum of the cubes of the first \( n \) natural numbers is given by: \[ \sum_{k=1}^{n} k^3 = \left( \frac{n(n+1)}{2} \right)^2. \] For \( n = 10 \): - Calculate \( \sum_{n=1}^{10} n \): \[ \sum_{n=1}^{10} n = \frac{10(10+1)}{2} = \frac{10 \times 11}{2} = 55. \] - Calculate \( \sum_{n=1}^{10} n^3 \): \[ \sum_{n=1}^{10} n^3 = \left( \frac{10(10+1)}{2} \right)^2 = \left( \frac{10 \times 11}{2} \right)^2 = 55^2 = 3025. \] ### Step 4: Plugging values back into the equation Now substituting these values back into our expression for \( S \): \[ S = \frac{1}{5} \left( 4 \cdot 3025 - 55 \right). \] Calculating inside the parentheses: \[ 4 \cdot 3025 = 12100, \] so, \[ S = \frac{1}{5} (12100 - 55) = \frac{1}{5} \cdot 12045. \] ### Step 5: Final calculation Now, divide by 5: \[ S = 2409. \] Thus, the final answer is: \[ \boxed{2409}. \]

To find the sum \[ S = \sum_{n=1}^{10} \frac{n(2n-1)(2n+1)}{5}, \] we can simplify the expression inside the summation first. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

The sum sum_(n=1)^(oo)tan^(-1)((3)/(n^(2)+n-1)) is equal to

sum_(n=1)^oo (n^2+6n+10)/((2n+1)!)

The infinite sum sum_(n=1)^(oo) ((5^(n) + 3^(n))/(5^(n))) is equal to

Evaluate : sum_(n=1)^(15) (2n+1)2^n .

Let S_n = 1 (n - 1) + 2. (n -2) + 3. (n - 3) +…+ (n -1).1, n ge 4. The sum sum_(n = 4)^oo ((2S_n)/(n!) - 1/((n - 2)!)) is equal to :

Let S_n = 1 (n - 1) + 2. (n -2) + 3. (n - 3) +…+ (n -1).1, n ge 4. The sum sum_(n = 4)^oo ((2S_n)/(n!) - 1/((n - 2)!)) is equal to :

sum_(n=1)^7(n(n+1)(2n+1))/4 is equal to

If S=sum_(n=1)^(10)(2n+(1)/(2)), then S

The sum of sum_(n=1)^(oo) ""^(n)C_(2) . (3^(n-2))/(n!) equal