Home
Class 12
MATHS
Suppose y is a function of x that sati...

Suppose y is a function of x that satisfies `(dy)/(dx)=(sqrt(1-y^(2)))/(x^(2))` and y=0 at `x=(2)/(pi)` then `y((3)/(pi))` is equal to :

A

0

B

`(1)/(2)`

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
B

`(dy)/(sqrt(1-y^(2)))=(dx)/(x^(2))`
`sin^(-1)(y)=-(1)/(x)+cimpliesc=(pi)/(2)`
`sin^(-1)(y)=-(pi)/(3)+(pi)/(2)+(pi)/(6)`
`y=(1)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If (dy)/(dx)+y tan x=sin2x and y(0)=1, then y(pi) is equal to:

y(dy)/(dx)sin x=cos x(sin x-(y^(2))/(2)); where at x=(pi)/(2)

if y(x) is satisfy the differential equation (dy)/(dx)=(tan x-y)sec^(2)x and y(0)=0. Then y=(-(pi)/(4)) is equal to

An equation of the curve satisfying x dy - y dx = sqrt(x^(2)-y^(2))dx and y(1) = 0 is

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to :

If cos x (dy)/(dx)-y sin x = 6x, (0 lt x lt (pi)/(2)) and y((pi)/(3))=0 , then y((pi)/(6)) is equal to :-

If y=tan^(-1)(cot((pi)/(2)-x)) then (dy)/(dx) is equal to

If (2+sinx)(dy)/(dx)+(y+1)cosx=0 and y(0)=1 , then y((pi)/(2)) is equal to

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to

If ((2+cosx)/(3+y))(dy)/(dx)+sinx=0 and y(0)=1 , then y((pi)/(3)) is equal to