Home
Class 12
MATHS
If veca,vecb are any two perpendicular v...

If `veca,vecb` are any two perpendicular vectors of equal magnitude and `|3veca+4vecb|+|4veca-3vecb|=20` then `|veca|` equals :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information about the vectors \(\vec{a}\) and \(\vec{b}\). ### Step 1: Define the Magnitudes Let the magnitude of both vectors \(\vec{a}\) and \(\vec{b}\) be \(k\). Therefore, we have: \[ |\vec{a}| = |\vec{b}| = k \] ### Step 2: Use the Property of Perpendicular Vectors Since \(\vec{a}\) and \(\vec{b}\) are perpendicular, we know: \[ \vec{a} \cdot \vec{b} = 0 \] ### Step 3: Calculate the Magnitude of \(3\vec{a} + 4\vec{b}\) We need to find the magnitude of the vector \(3\vec{a} + 4\vec{b}\): \[ |3\vec{a} + 4\vec{b}|^2 = |3\vec{a}|^2 + |4\vec{b}|^2 + 2(\vec{a} \cdot \vec{b}) \cdot 3 \cdot 4 \] Since \(\vec{a} \cdot \vec{b} = 0\), this simplifies to: \[ |3\vec{a} + 4\vec{b}|^2 = (3k)^2 + (4k)^2 = 9k^2 + 16k^2 = 25k^2 \] Thus, \[ |3\vec{a} + 4\vec{b}| = 5k \] ### Step 4: Calculate the Magnitude of \(4\vec{a} - 3\vec{b}\) Next, we calculate the magnitude of the vector \(4\vec{a} - 3\vec{b}\): \[ |4\vec{a} - 3\vec{b}|^2 = |4\vec{a}|^2 + |-3\vec{b}|^2 + 2(\vec{a} \cdot \vec{b}) \cdot 4 \cdot (-3) \] Again, since \(\vec{a} \cdot \vec{b} = 0\), this simplifies to: \[ |4\vec{a} - 3\vec{b}|^2 = (4k)^2 + (-3k)^2 = 16k^2 + 9k^2 = 25k^2 \] Thus, \[ |4\vec{a} - 3\vec{b}| = 5k \] ### Step 5: Combine the Results Now we combine the magnitudes we calculated: \[ |3\vec{a} + 4\vec{b}| + |4\vec{a} - 3\vec{b}| = 5k + 5k = 10k \] According to the problem statement, this equals 20: \[ 10k = 20 \] ### Step 6: Solve for \(k\) Dividing both sides by 10 gives: \[ k = 2 \] ### Conclusion Thus, the magnitude of \(\vec{a}\) is: \[ |\vec{a}| = k = 2 \]

To solve the problem, we start with the given information about the vectors \(\vec{a}\) and \(\vec{b}\). ### Step 1: Define the Magnitudes Let the magnitude of both vectors \(\vec{a}\) and \(\vec{b}\) be \(k\). Therefore, we have: \[ |\vec{a}| = |\vec{b}| = k \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are mutually perpendicular vectors of equal magnitude show that veca+vecb+vecc is equally inclined to veca, vecb and vecc

if veca,vecb and vecc are mutally perpendicular vectors of equal magnitudes, then find the angle between vectors and veca+ vecb+vecc .

Let veca and vecb be two non-zero vectors perpendicular to each other and |veca|=|vecb| . If |veca xx vecb|=|veca| , then the angle between the vectors (veca +vecb+(veca xx vecb)) and veca is equal to :

veca and vecb are two unit vectors that are mutually perpendicular. A unit vector that if equally inclined to veca, vecb and veca xxvecb is equal to

For any two vectors veca and vecb write when | veca + vecb|= | veca-vecb| holds.

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , " then " |3veca +2vecb|=

For any two vectors veca and vecb prove that |veca.vecb|lt+|veca||vecb|

If veca and vecb are any two vectors of magnitudes 1and 2. respectively, and (1-3veca.vecb)^(2)+|2veca+vecb+3(vecaxxvecb)|^(2)=47 then the angle between veca and vecb is