Home
Class 12
MATHS
The value of int(0)^(pi//2)x|sin^(2)x-(1...

The value of `int_(0)^(pi//2)x|sin^(2)x-(1)/(2)|dx` is equal to `(api)/(b)` where a,b are co-prime numbers, then a.b is ____________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} x \left| \sin^2 x - \frac{1}{2} \right| dx \), we need to first determine where the expression inside the absolute value changes sign. ### Step 1: Determine the points where \( \sin^2 x = \frac{1}{2} \) The equation \( \sin^2 x = \frac{1}{2} \) gives us: \[ \sin x = \frac{1}{\sqrt{2}} \quad \Rightarrow \quad x = \frac{\pi}{4} \] Thus, we have two intervals to consider for the integral: \( [0, \frac{\pi}{4}] \) and \( [\frac{\pi}{4}, \frac{\pi}{2}] \). ### Step 2: Evaluate the integral on the intervals 1. **For \( x \in [0, \frac{\pi}{4}] \)**: - Here, \( \sin^2 x < \frac{1}{2} \), so \( \left| \sin^2 x - \frac{1}{2} \right| = \frac{1}{2} - \sin^2 x \). - Therefore, the integral becomes: \[ I_1 = \int_{0}^{\frac{\pi}{4}} x \left( \frac{1}{2} - \sin^2 x \right) dx \] 2. **For \( x \in [\frac{\pi}{4}, \frac{\pi}{2}] \)**: - Here, \( \sin^2 x > \frac{1}{2} \), so \( \left| \sin^2 x - \frac{1}{2} \right| = \sin^2 x - \frac{1}{2} \). - Therefore, the integral becomes: \[ I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} x \left( \sin^2 x - \frac{1}{2} \right) dx \] ### Step 3: Combine the integrals The total integral is: \[ I = I_1 + I_2 = \int_{0}^{\frac{\pi}{4}} x \left( \frac{1}{2} - \sin^2 x \right) dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} x \left( \sin^2 x - \frac{1}{2} \right) dx \] ### Step 4: Evaluate \( I_1 \) For \( I_1 \): \[ I_1 = \int_{0}^{\frac{\pi}{4}} \left( \frac{x}{2} - x \sin^2 x \right) dx \] This can be split into two separate integrals: \[ I_1 = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} x \, dx - \int_{0}^{\frac{\pi}{4}} x \sin^2 x \, dx \] Calculating the first integral: \[ \frac{1}{2} \int_{0}^{\frac{\pi}{4}} x \, dx = \frac{1}{2} \cdot \left[ \frac{x^2}{2} \right]_{0}^{\frac{\pi}{4}} = \frac{1}{2} \cdot \frac{(\frac{\pi}{4})^2}{2} = \frac{\pi^2}{32} \] For the second integral, we can use integration by parts: Let \( u = x \) and \( dv = \sin^2 x \, dx \). Then, \( du = dx \) and \( v = \frac{x}{2} - \frac{\sin(2x)}{4} \). ### Step 5: Evaluate \( I_2 \) For \( I_2 \): \[ I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left( x \sin^2 x - \frac{x}{2} \right) dx \] This can also be split into two integrals: \[ I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} x \sin^2 x \, dx - \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} x \, dx \] ### Step 6: Combine results and simplify After evaluating both \( I_1 \) and \( I_2 \), we will sum them up to find \( I \). ### Final Step: Express \( I \) in the form \( \frac{a \pi}{b} \) After evaluating the integrals and simplifying, we will find \( I = \frac{a \pi}{b} \) where \( a \) and \( b \) are coprime integers. Finally, we will calculate \( a \cdot b \).

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} x \left| \sin^2 x - \frac{1}{2} \right| dx \), we need to first determine where the expression inside the absolute value changes sign. ### Step 1: Determine the points where \( \sin^2 x = \frac{1}{2} \) The equation \( \sin^2 x = \frac{1}{2} \) gives us: \[ \sin x = \frac{1}{\sqrt{2}} \quad \Rightarrow \quad x = \frac{\pi}{4} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2 pi)|cos x-sin x|dx is

The value of int_(0)^(2pi) |cos x -sin x|dx is

The value of int_(0)^(2pi)[sin2x(1+cos3x)] dx, where [t] denotes

The value of int _(0)^(pi//2) ((sin x + cos x)^(2))/(sqrt(1+sin 2x) dx is

int_(0)^( pi)(x sin2x sin((pi)/(2)cos x))/(2x-pi)dx is equal to

If the value of int_(0)^( pi)(8sin^(2016)x+5cos^(2016)x)/(sin^(2016)x+cos^(2016)x)dx is (a pi)/(b) ( a and b are coprime), then (a-b) is

int_(-pi//2)^(pi//2)"sin"|x|dx is equal to 1 (b) 2 (c) -1 (d) -2