Home
Class 12
MATHS
The value of sum(r=0)^(3)""^(8)C(r)(""^...

The value of `sum_(r=0)^(3)""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r))` equals ________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{r=0}^{3} \binom{8}{r} \left( \binom{5}{r+1} - \binom{4}{r} \right) \), we will break it down step by step. ### Step 1: Rewrite the Summation We start with the expression: \[ \sum_{r=0}^{3} \binom{8}{r} \left( \binom{5}{r+1} - \binom{4}{r} \right) \] This can be separated into two sums: \[ \sum_{r=0}^{3} \binom{8}{r} \binom{5}{r+1} - \sum_{r=0}^{3} \binom{8}{r} \binom{4}{r} \] ### Step 2: Evaluate the First Sum For the first sum, we can use the identity: \[ \sum_{r=0}^{n} \binom{m}{r} \binom{n}{k-r} = \binom{m+n}{k} \] Here, we need to adjust the indices. We can change the index of the first sum by letting \( s = r + 1 \), which gives \( r = s - 1 \). Thus, the limits change from \( r = 0 \) to \( r = 3 \) into \( s = 1 \) to \( s = 4 \): \[ \sum_{s=1}^{4} \binom{8}{s-1} \binom{5}{s} \] This can be rewritten as: \[ \sum_{s=0}^{4} \binom{8}{s-1} \binom{5}{s} = \sum_{s=0}^{4} \binom{8}{s} \binom{5}{s} = \binom{13}{4} \] ### Step 3: Evaluate the Second Sum For the second sum, we can directly use the identity: \[ \sum_{r=0}^{n} \binom{m}{r} \binom{n}{k-r} = \binom{m+n}{k} \] Thus, \[ \sum_{r=0}^{3} \binom{8}{r} \binom{4}{r} = \binom{12}{3} \] ### Step 4: Combine the Results Now we combine the results of both sums: \[ \sum_{r=0}^{3} \binom{8}{r} \binom{5}{r+1} - \sum_{r=0}^{3} \binom{8}{r} \binom{4}{r} = \binom{13}{4} - \binom{12}{3} \] ### Step 5: Calculate the Binomial Coefficients Calculating the binomial coefficients: \[ \binom{13}{4} = \frac{13 \times 12 \times 11 \times 10}{4 \times 3 \times 2 \times 1} = 715 \] \[ \binom{12}{3} = \frac{12 \times 11 \times 10}{3 \times 2 \times 1} = 220 \] ### Step 6: Final Result Thus, the final result is: \[ 715 - 220 = 495 \] Therefore, the value of the summation is: \[ \boxed{495} \]

To solve the problem \( \sum_{r=0}^{3} \binom{8}{r} \left( \binom{5}{r+1} - \binom{4}{r} \right) \), we will break it down step by step. ### Step 1: Rewrite the Summation We start with the expression: \[ \sum_{r=0}^{3} \binom{8}{r} \left( \binom{5}{r+1} - \binom{4}{r} \right) \] This can be separated into two sums: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(40) r""^(40)C_(r)""^(30)C_(r) is

The value of sum_(r=0)^(15)r^(2)((""^(15)C_(r))/(""^(15)C_(r-1))) is equal to

The vaule of sum_(r=0)^(n-1) (""^(n)C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

The value of sum_(r=0)^(9)(10C_(r))/(^^^10C_(r)+^(10)C_(r+1)) is equal to