Home
Class 12
MATHS
If 1+x^(4)-x^(5)=sum(i=0)^(5)a(i)(1+x)^(...

If `1+x^(4)-x^(5)=sum_(i=0)^(5)a_(i)(1+x)^(i)` for all `x""inR`, then `a_(2)` is equal to ________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(1 + x^4 - x^5 = \sum_{i=0}^{5} a_i (1+x)^i\) for \(a_2\), we can follow these steps: ### Step 1: Expand the Right-Hand Side We start by expanding the right-hand side of the equation: \[ \sum_{i=0}^{5} a_i (1+x)^i = a_0 (1+x)^0 + a_1 (1+x)^1 + a_2 (1+x)^2 + a_3 (1+x)^3 + a_4 (1+x)^4 + a_5 (1+x)^5 \] This gives us: \[ = a_0 + a_1 (1+x) + a_2 (1+x)^2 + a_3 (1+x)^3 + a_4 (1+x)^4 + a_5 (1+x)^5 \] ### Step 2: Differentiate Both Sides Next, we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(1 + x^4 - x^5) = \frac{d}{dx}\left(\sum_{i=0}^{5} a_i (1+x)^i\right) \] The left-hand side becomes: \[ 0 + 4x^3 - 5x^4 = 4x^3 - 5x^4 \] The right-hand side, using the chain rule, becomes: \[ a_1 + 2a_2(1+x) + 3a_3(1+x)^2 + 4a_4(1+x)^3 + 5a_5(1+x)^4 \] ### Step 3: Set \(x = -1\) To find \(a_2\), we can set \(x = -1\): \[ 4(-1)^3 - 5(-1)^4 = a_1 + 2a_2(1-1) + 3a_3(1-1)^2 + 4a_4(1-1)^3 + 5a_5(1-1)^4 \] Calculating the left-hand side: \[ 4(-1) - 5(1) = -4 - 5 = -9 \] The right-hand side simplifies to: \[ a_1 + 0 + 0 + 0 + 0 = a_1 \] Thus, we have: \[ -9 = a_1 \] ### Step 4: Differentiate Again We differentiate again to find a relation involving \(a_2\): \[ \frac{d}{dx}(4x^3 - 5x^4) = 12x^2 - 20x^3 \] The right-hand side becomes: \[ 0 + 2a_2 + 6a_3(1+x) + 12a_4(1+x)^2 + 20a_5(1+x)^3 \] ### Step 5: Set \(x = -1\) Again Setting \(x = -1\) again gives us: \[ 12(-1)^2 - 20(-1)^3 = 2a_2 + 0 + 0 + 0 + 0 \] Calculating the left-hand side: \[ 12 + 20 = 32 \] Thus, we have: \[ 32 = 2a_2 \] ### Step 6: Solve for \(a_2\) Now we can solve for \(a_2\): \[ a_2 = \frac{32}{2} = 16 \] ### Final Answer Thus, the value of \(a_2\) is: \[ \boxed{16} \]

To solve the equation \(1 + x^4 - x^5 = \sum_{i=0}^{5} a_i (1+x)^i\) for \(a_2\), we can follow these steps: ### Step 1: Expand the Right-Hand Side We start by expanding the right-hand side of the equation: \[ \sum_{i=0}^{5} a_i (1+x)^i = a_0 (1+x)^0 + a_1 (1+x)^1 + a_2 (1+x)^2 + a_3 (1+x)^3 + a_4 (1+x)^4 + a_5 (1+x)^5 \] This gives us: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1+x^(4)+x^(5)=sum_(i=0)^(5)a_(i)(1+x)^(i), for all x in R, then a_(2) is :

For x in R, x ne -1 , if (1 + x)^(2016) = sum_(i = 0)^(2016) a_(i)x^(i) , then a_(17) is equal to :

FOr xi nr,x!=-1, If (1+x)^(2016)+x(1+x)^(215)+x^(2)(1+x)^(2014)++x^(2016)=sum_(i=0)^(2016)a_(i)x^(i), then a_(17) is equal to -

If f(x)=sum_(k=0)^(n)a_(k)|x-1|^(k), where a_(i)in R, then

Let (x+10)^(50)+(x-10)^(50)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(50)x^(50) for all x in R , then (a_(2))/(a_(0)) is equal to

Let (x + 10)^(50) + (x - 10)^(50) = a_(0) + a_(1) x + a_(2)X^(2) + ….. + a_(50) x^(50) , for all x in R , then (a_(2))/(a_(0)) is equal to

If (1+x+x^(2))^(8)=a_(0)+a_(1)x+a_(2)x^(2)+…a_(16)x^(16) for all values of x, then (a_(5))/(100) is equal to

(1+x+x^(2)+x^(3))^(5)=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(15)x^(15), then a_(10) equals to

(1+x-2x^(2))^(6)=sum_(r=0)^(12)a_(r)x^(r) then a_(2)+a_(4)+....+a_(12)=