Home
Class 12
MATHS
If e^(x + y) = y^2 then (d^2y)/(dx^2) at...

If `e^(x + y) = y^2` then `(d^2y)/(dx^2)` at (`-1, 1`) is equal to :

A

2

B

1

C

`-1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) at the point \((-1, 1)\) given the equation \(e^{x+y} = y^2\), we will follow these steps: ### Step 1: Differentiate the given equation implicitly. We start with the equation: \[ e^{x+y} = y^2 \] Differentiating both sides with respect to \(x\): \[ \frac{d}{dx}(e^{x+y}) = \frac{d}{dx}(y^2) \] Using the chain rule on the left side: \[ e^{x+y} \left(1 + \frac{dy}{dx}\right) = 2y \frac{dy}{dx} \] ### Step 2: Solve for \(\frac{dy}{dx}\). Rearranging the equation: \[ e^{x+y} + e^{x+y} \frac{dy}{dx} = 2y \frac{dy}{dx} \] Factoring out \(\frac{dy}{dx}\): \[ e^{x+y} = \frac{dy}{dx} (2y - e^{x+y}) \] Thus, we can express \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{e^{x+y}}{2y - e^{x+y}} \] ### Step 3: Evaluate \(\frac{dy}{dx}\) at the point \((-1, 1)\). First, we need to find \(e^{x+y}\) at \((-1, 1)\): \[ e^{-1 + 1} = e^0 = 1 \] Now substituting \(y = 1\): \[ \frac{dy}{dx} = \frac{1}{2(1) - 1} = \frac{1}{1} = 1 \] ### Step 4: Differentiate again to find \(\frac{d^2y}{dx^2}\). Now we differentiate \(\frac{dy}{dx} = \frac{e^{x+y}}{2y - e^{x+y}}\) again using the quotient rule: Let \(u = e^{x+y}\) and \(v = 2y - e^{x+y}\): \[ \frac{d^2y}{dx^2} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \(\frac{du}{dx}\): \[ \frac{du}{dx} = e^{x+y} \left(1 + \frac{dy}{dx}\right) = 1(1 + 1) = 2 \] Calculating \(\frac{dv}{dx}\): \[ \frac{dv}{dx} = 2 \frac{dy}{dx} - \frac{du}{dx} = 2(1) - 2 = 0 \] ### Step 5: Substitute into the second derivative formula. Now substituting \(u\), \(v\), \(\frac{du}{dx}\), and \(\frac{dv}{dx}\): \[ \frac{d^2y}{dx^2} = \frac{(2y - e^{x+y})(2) - (e^{x+y})(0)}{(2y - e^{x+y})^2} \] At the point \((-1, 1)\): \[ \frac{d^2y}{dx^2} = \frac{(2(1) - 1)(2)}{(2(1) - 1)^2} = \frac{(2 - 1)(2)}{(2 - 1)^2} = \frac{1 \cdot 2}{1^2} = 2 \] ### Final Answer: Thus, \(\frac{d^2y}{dx^2}\) at the point \((-1, 1)\) is: \[ \boxed{2} \]

To find \(\frac{d^2y}{dx^2}\) at the point \((-1, 1)\) given the equation \(e^{x+y} = y^2\), we will follow these steps: ### Step 1: Differentiate the given equation implicitly. We start with the equation: \[ e^{x+y} = y^2 \] Differentiating both sides with respect to \(x\): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=e^t sin t , y=e^t cos t , t is a parameter , then (d^2y)/(dx^2) at (1,1) is equal to

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

If x^(2)+y^(2) =1,then (d^(2)y)/(dx^(2)) =

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

If x=at^(2),y=2at then (d^(2)y)/(dx^(2)) is equal to

For the curve 32x^(3)y^(2)=(x+y)^(5) , the value of (d^(2)y)/(dx^(2)) at P(1,1) is equal to