Home
Class 12
MATHS
If f(x) = (e^([x] + |x|) -3)/([x] + |x|+...

If `f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1)` , then: (where [.] represents greatest integer function)

A

`lim_(x to 0^(+)) f(x) = -2`

B

`lim_(x to 0^(+)) f(x) = 0`

C

`lim_(x to 0^(+)) f(x) = 2`

D

`lim_(x to 0^(+)) f(x)` exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the function \( f(x) = \frac{e^{[x] + |x|} - 3}{[x] + |x| + 1} \), where \([x]\) represents the greatest integer function, we will analyze the function step by step. ### Step 1: Understand the components of the function The function consists of two main components: the greatest integer function \([x]\) and the absolute value function \(|x|\). ### Step 2: Analyze the case for \( x \geq 0 \) For \( x \geq 0 \): - The greatest integer function \([x] = n\) where \( n \) is the largest integer less than or equal to \( x \). - The absolute value \(|x| = x\). Thus, for \( x \) in the interval \([n, n+1)\): - \([x] = n\) - \(|x| = x\) So, we can rewrite the function as: \[ f(x) = \frac{e^{n + x} - 3}{n + x + 1} \] ### Step 3: Evaluate the limit as \( x \) approaches 0 from the right Now, we will evaluate the limit as \( x \) approaches \( 0^+ \): - Here, \([x] = 0\) and \(|x| = x\). Substituting these values into the function: \[ f(x) = \frac{e^{0 + x} - 3}{0 + x + 1} = \frac{e^{x} - 3}{x + 1} \] ### Step 4: Calculate the limit Now we need to calculate: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{x} - 3}{x + 1} \] As \( x \to 0^+ \): - \( e^{x} \to e^0 = 1 \) - Thus, the limit becomes: \[ \lim_{x \to 0^+} \frac{1 - 3}{0 + 1} = \frac{-2}{1} = -2 \] ### Conclusion Therefore, the value of \( f(x) \) as \( x \) approaches \( 0^+ \) is: \[ \lim_{x \to 0^+} f(x) = -2 \]

To solve the function \( f(x) = \frac{e^{[x] + |x|} - 3}{[x] + |x| + 1} \), where \([x]\) represents the greatest integer function, we will analyze the function step by step. ### Step 1: Understand the components of the function The function consists of two main components: the greatest integer function \([x]\) and the absolute value function \(|x|\). ### Step 2: Analyze the case for \( x \geq 0 \) For \( x \geq 0 \): - The greatest integer function \([x] = n\) where \( n \) is the largest integer less than or equal to \( x \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

Let f(x) = [x] and [] represents the greatest integer function, then

Evaluate: lim (tan x)/(x) where [.] represents the greatest integer function

Consider the function f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1) , then (where [.] represents the greatest integer part function)

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

If f(x)=[x](sin kx)^(p) is continuous for real x, then (where [.] represents the greatest integer function)

Let f(x)=|(x+(1)/(2))[x]| when -2<=x<=2| .where [.] represents greatest integer function.Then