Home
Class 12
MATHS
f(x) = {{:(1 + cos^(-1){cot x} " ," x < ...

`f(x) = {{:(1 + cos^(-1){cot x} " ," x < pi/2),(pi[x] + 1 " ," x ge pi/2):}`
Where [ ] denotes greatest integer and { } denotes fractional part function, Then value of jump of discontinuity is:

A

`pi/2`

B

`pi/2 - 1`

C

`0`

D

`1 - pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the jump of discontinuity for the given piecewise function \( f(x) \), we will evaluate the function at the point \( x = \frac{\pi}{2} \) from both the left and the right. ### Step 1: Define the function The function is defined as: \[ f(x) = \begin{cases} 1 + \{ \cos^{-1}(\cot x) \} & \text{if } x < \frac{\pi}{2} \\ \pi [x] + 1 & \text{if } x \geq \frac{\pi}{2} \end{cases} \] where \( [x] \) denotes the greatest integer function and \( \{x\} \) denotes the fractional part function. ### Step 2: Evaluate the right limit as \( x \) approaches \( \frac{\pi}{2} \) For \( x \geq \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2} + h\right) = \pi \left[\frac{\pi}{2} + h\right] + 1 \] As \( h \to 0 \), \( \left[\frac{\pi}{2} + h\right] = 1 \) (since \( \frac{\pi}{2} \approx 1.57 \)). Thus: \[ \lim_{h \to 0^+} f\left(\frac{\pi}{2} + h\right) = \pi \cdot 1 + 1 = \pi + 1 \] ### Step 3: Evaluate the left limit as \( x \) approaches \( \frac{\pi}{2} \) For \( x < \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2} - h\right) = 1 + \{\cos^{-1}(\cot(\frac{\pi}{2} - h))\} \] Using the identity \( \cot\left(\frac{\pi}{2} - h\right) = \tan(h) \), we have: \[ \lim_{h \to 0^+} f\left(\frac{\pi}{2} - h\right) = 1 + \{\cos^{-1}(\tan(h))\} \] As \( h \to 0 \), \( \tan(h) \to 0 \) and thus \( \cos^{-1}(0) = \frac{\pi}{2} \). Therefore: \[ \lim_{h \to 0^+} f\left(\frac{\pi}{2} - h\right) = 1 + \left\{\frac{\pi}{2}\right\} = 1 + \left(\frac{\pi}{2} - 1\right) = \frac{\pi}{2} \] ### Step 4: Calculate the jump of discontinuity The jump of discontinuity is given by the difference between the right limit and the left limit: \[ \text{Jump} = \lim_{h \to 0^+} f\left(\frac{\pi}{2} + h\right) - \lim_{h \to 0^+} f\left(\frac{\pi}{2} - h\right) \] Substituting the limits we calculated: \[ \text{Jump} = (\pi + 1) - \left(\frac{\pi}{2}\right) \] Simplifying this: \[ \text{Jump} = \pi + 1 - \frac{\pi}{2} = \frac{2\pi}{2} + 1 - \frac{\pi}{2} = \frac{\pi}{2} + 1 \] ### Final Answer The value of the jump of discontinuity is: \[ \frac{\pi}{2} + 1 \]

To find the value of the jump of discontinuity for the given piecewise function \( f(x) \), we will evaluate the function at the point \( x = \frac{\pi}{2} \) from both the left and the right. ### Step 1: Define the function The function is defined as: \[ f(x) = \begin{cases} 1 + \{ \cos^{-1}(\cot x) \} & \text{if } x < \frac{\pi}{2} \\ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

The function f(x)={x} sin (pi[x]) , where [.] denotes the greatest integer function and {.} is the fractional part function, is discontinuous at

The function f(x)=[x]+sqrt({x}), where [.] denotes the greatest Integer function and {.} denotes the fractional part function respectively,is discontinuous at

Consider the function f(x) = {x+2} [cos 2x] (where [.] denotes greatest integer function & {.} denotes fractional part function.)

f(x) = [x-1] + {x)^{x}, x in (1,3), then f^-1(x) is- (where [.] denotes greatest integer function and (J denotes fractional part function)

Solve : [x]^(2)=x+2{x}, where [.] and {.} denote the greatest integer and the fractional part functions, respectively.

Solve (1)/(x)+(1)/([2x])={x}+(1)/(3) where [.] denotes the greatest integers function and {.} denotes fractional part function.

Sove [cot^(-1) x] + [cos^(-1) x] =0 , where [.] denotes the greatest integer function