Home
Class 12
MATHS
The number of values of x satisfying ...

The number of values of x satisfying
`2^(log_5 16. log_4 x + log_(root(x)(2))5) + 5^x + x^((log_5 4)+5) + x^5 = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ 2^{(\log_5 16) \cdot (\log_4 x) + \log_{\sqrt{x}} 5} + 5^x + x^{(\log_5 4) + 5} + x^5 = 0, \] we will analyze each term step-by-step. ### Step 1: Simplify the logarithmic terms We start by rewriting \(\log_5 16\) and \(\log_4 x\): \[ \log_5 16 = \log_5 (4^2) = 2 \log_5 4. \] Thus, we can rewrite the equation as: \[ 2^{(2 \log_5 4) \cdot (\log_4 x) + \log_{\sqrt{x}} 5} + 5^x + x^{(\log_5 4) + 5} + x^5 = 0. \] ### Step 2: Rewrite \(\log_{\sqrt{x}} 5\) Using the change of base formula, we can rewrite \(\log_{\sqrt{x}} 5\): \[ \log_{\sqrt{x}} 5 = \frac{\log_5 5}{\log_5 \sqrt{x}} = \frac{1}{\frac{1}{2} \log_5 x} = \frac{2}{\log_5 x}. \] ### Step 3: Substitute back into the equation Now substituting back, we have: \[ 2^{(2 \log_5 4) \cdot (\log_4 x) + \frac{2}{\log_5 x}} + 5^x + x^{(\log_5 4) + 5} + x^5 = 0. \] ### Step 4: Analyze the terms 1. **First Term**: \(2^{(2 \log_5 4) \cdot (\log_4 x) + \frac{2}{\log_5 x}}\) is always positive for any \(x > 0\). 2. **Second Term**: \(5^x\) is also always positive for any real \(x\). 3. **Third Term**: \(x^{(\log_5 4) + 5}\) is positive for \(x > 0\). 4. **Fourth Term**: \(x^5\) is positive for \(x > 0\). ### Step 5: Conclude about the equation Since all terms are positive for \(x > 0\), the left-hand side of the equation cannot equal zero for any positive \(x\). ### Step 6: Consider negative values of \(x\) For \(x < 0\), the logarithmic terms become undefined, as logarithms are not defined for negative numbers in the real number system. ### Conclusion Thus, there are no values of \(x\) that satisfy the given equation. Therefore, the number of values of \(x\) satisfying the equation is: \[ \boxed{0}. \] ---

To solve the equation \[ 2^{(\log_5 16) \cdot (\log_4 x) + \log_{\sqrt{x}} 5} + 5^x + x^{(\log_5 4) + 5} + x^5 = 0, \] we will analyze each term step-by-step. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of values of x satisfying 1 +"log"_(5) (x^(2) + 1) ge "log"_(5) (x^(2) + 4x +1) , is

The number of value of x satisfying 1+log_(5)(x^(2)+1)>=log_(5)(x^(2)+4x+1) is

The value of x satisfying log_(3)4 -2 log_(3)sqrt(3x +1) =1 - log_(3)(5x -2)

The number of real values of x satisfying the equation.log_(5)(5^(x)-1)*log_(25)(5^(x+1)-5)=1 is :

Find the real value of 'x' satisfying the equation x ^(0.5 log_(sqrtx) (x^2-x) = 3 ^ (log_9 4

Number of value(s) of x satisfying log_(x^(2)+2)(5+sqrt(x))+log_(2+sqrt(x))(5+x^(2))=0 is/are

The number of solutions of equation log_(3)x log_(4)x log_(5)x=log_(3)x log_(4)x+log_(5)x

Find the value of x satisfying (log_(10)(2^(x)+x-41)=x(1-log_(10)5)