Home
Class 12
MATHS
The number of solutions of equation 2 ta...

The number of solutions of equation `2 tan^(-1)(x + 1) = cos^(-1)(x/2)`.

Text Solution

Verified by Experts

The correct Answer is:
1

`cos(2tan^(-1)(x+1))=(x)/(2)`
`cos 2theta=(1-tan^(2)theta)/(1+tan^(2)theta),(1-(x+1)^(2))/(1+(x+1))^(2)=(x)/(2)`
`2(1+x+1)(1-x-1)=x(x^(2)+2x+2)rArr2(x+2)(-x)=x(x^(2)+2x+2)`
`x(x^(2)+2x+2+2x+4)=0`
`x(x^(2)+4x+6)=0`
`x(x^(2)+4x+6)=0`
`x=0` is this only solution
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of solution(s) of the equation 2tan^(-1)(2x-1)=cos^(-1)(x) is :

The number of solutions of the equation sin^(-1)|x|=|cos^(-1)x| are

The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2) is

Number of solution of the equation 2sin^(-1)(x+2)=cos^(-1)(x+3) is :

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is 2(b)3 (c) 1(d)0

The number of solutions of the equation tan^(-1)(x+1)+tan^(-1)x+tan^(-1)(x-1)=tan^(-1)3