Home
Class 12
MATHS
f(x) = sin^(-1)(sin x) then (d)/(dx)f(x)...

`f(x) = sin^(-1)(sin x)` then `(d)/(dx)f(x)` at `x = (7pi)/(2)` is

A

1

B

`-1`

C

Not differentiable

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( f(x) = \sin^{-1}(\sin x) \) at the point \( x = \frac{7\pi}{2} \). ### Step-by-Step Solution: 1. **Understanding the Function**: The function \( f(x) = \sin^{-1}(\sin x) \) is defined as the inverse sine of the sine of \( x \). However, the output of \( \sin^{-1}(y) \) is restricted to the range \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). 2. **Identifying the Range of \( x \)**: The sine function is periodic with a period of \( 2\pi \). Therefore, we can express \( x \) in terms of its equivalent angle within the principal range of the sine function. 3. **Finding the Equivalent Angle**: For \( x = \frac{7\pi}{2} \): \[ \frac{7\pi}{2} - 3\pi = \frac{7\pi}{2} - \frac{6\pi}{2} = \frac{\pi}{2} \] Thus, \( \sin\left(\frac{7\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) = 1 \). 4. **Evaluating \( f(x) \)**: Therefore, we have: \[ f\left(\frac{7\pi}{2}\right) = \sin^{-1}(1) = \frac{\pi}{2} \] 5. **Finding the Derivative**: To find the derivative \( f'(x) \), we need to consider the piecewise nature of \( f(x) \): - For \( x \) in the interval \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \), \( f(x) = x \). - For \( x \) in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \), \( f(x) = \pi - x \). - For \( x \) in the interval \( \left[\frac{3\pi}{2}, \frac{5\pi}{2}\right] \), \( f(x) = x - 2\pi \). - For \( x \) in the interval \( \left[\frac{5\pi}{2}, \frac{7\pi}{2}\right] \), \( f(x) = 3\pi - x \). - For \( x \) in the interval \( \left[\frac{7\pi}{2}, \frac{9\pi}{2}\right] \), \( f(x) = x - 4\pi \). 6. **Calculating Left-Hand and Right-Hand Derivatives**: - **Left-Hand Derivative** at \( x = \frac{7\pi}{2} \): \[ f(x) = 3\pi - x \quad \text{for } x < \frac{7\pi}{2} \] \[ f'(x) = -1 \quad \text{(derivative of } 3\pi - x\text{)} \] - **Right-Hand Derivative** at \( x = \frac{7\pi}{2} \): \[ f(x) = x - 4\pi \quad \text{for } x > \frac{7\pi}{2} \] \[ f'(x) = 1 \quad \text{(derivative of } x - 4\pi\text{)} \] 7. **Conclusion**: Since the left-hand derivative (\(-1\)) is not equal to the right-hand derivative (\(1\)), the function \( f(x) \) is not differentiable at \( x = \frac{7\pi}{2} \). ### Final Answer: The derivative \( \frac{d}{dx} f(x) \) at \( x = \frac{7\pi}{2} \) is **not differentiable**.

To solve the problem, we need to find the derivative of the function \( f(x) = \sin^{-1}(\sin x) \) at the point \( x = \frac{7\pi}{2} \). ### Step-by-Step Solution: 1. **Understanding the Function**: The function \( f(x) = \sin^{-1}(\sin x) \) is defined as the inverse sine of the sine of \( x \). However, the output of \( \sin^{-1}(y) \) is restricted to the range \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). 2. **Identifying the Range of \( x \)**: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) =sinxandg(x)=x^(3) (d)/(dx)f(g(x)) at x=(pi)/(2) is ________.

int[(d)/(dx)f(x)]dx=

f(x)=(2x-pi)^(3)+2x-cos x,Th e n,(d)/(dx)[f^(-1)(x)] at x=pi is equal to :

If int sqrt(1+sec x)dx=2sin^(-1)[sqrt(2)f(x)]+c then (d)/(dx)[f(x)] is equal to (A)cos(x)/(2)(B)-(1)/(2)cos(x)/(2)(C)(1)/(2)cos(x)/(2)(D)(1)/(2)sin(x)/(2)

If f(x)=tan^(-1)((3x-x^(3))/(1-3x^(2))) then (d)/(dx)(f(x)) is equal to

The function f(x)=e^(x)+x, being differentiable and one-to-one,has a differentiable inverse f^(-1)(x) .The value of (d)/(dx)(f^(-1)) at the point f(log2) is (a) (1)/(1n2) (b) (1)/(3)( c) (1)/(4) (d) none of these

If adifferentiabl e function f(x)=e^(x)+2x is given,then equal to (d)/(dx)(f^(-1)(x)) at x=f(ln3) is equal to

If (d(f(x))/(dx)=(1)/(1+x^(2)) then (d)/(dx){f(x^(3))} is