Home
Class 12
MATHS
f(x) = int(x^(2)+x+1)/(x+1+sqrt(x))dx, t...

`f(x) = int(x^(2)+x+1)/(x+1+sqrt(x))dx`, then f(1) =

A

`(7)/(6)`

B

`(2)/(3)`

C

`(11)/(6)`

D

`(5)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral given by the function: \[ f(x) = \int \frac{x^2 + x + 1}{x + 1 + \sqrt{x}} \, dx \] We want to find \( f(1) \). ### Step-by-Step Solution: 1. **Rewrite the Numerator:** We can express the numerator \( x^2 + x + 1 \) in a different way. Notice that we can factor it as follows: \[ x^2 + x + 1 = (x + 1 + \sqrt{x})(x + 1 - \sqrt{x}) \] This is because: \[ (x + 1 + \sqrt{x})(x + 1 - \sqrt{x}) = (x + 1)^2 - (\sqrt{x})^2 = x^2 + 2x + 1 - x = x^2 + x + 1 \] 2. **Substitute into the Integral:** Now we can substitute this back into the integral: \[ f(x) = \int \frac{(x + 1 + \sqrt{x})(x + 1 - \sqrt{x})}{x + 1 + \sqrt{x}} \, dx \] The \( x + 1 + \sqrt{x} \) terms cancel out: \[ f(x) = \int (x + 1 - \sqrt{x}) \, dx \] 3. **Integrate Each Term:** Now we can integrate term by term: \[ f(x) = \int (x + 1 - \sqrt{x}) \, dx = \int x \, dx + \int 1 \, dx - \int \sqrt{x} \, dx \] \[ = \frac{x^2}{2} + x - \frac{2}{3} x^{3/2} + C \] 4. **Evaluate \( f(1) \):** Now we substitute \( x = 1 \) into the integrated function: \[ f(1) = \frac{1^2}{2} + 1 - \frac{2}{3} (1)^{3/2} + C \] \[ = \frac{1}{2} + 1 - \frac{2}{3} + C \] \[ = \frac{1}{2} + \frac{2}{2} - \frac{2}{3} + C \] \[ = \frac{3}{2} - \frac{2}{3} + C \] 5. **Finding a Common Denominator:** To combine these fractions, we find a common denominator (which is 6): \[ = \frac{9}{6} - \frac{4}{6} + C = \frac{5}{6} + C \] 6. **Final Result:** Since we do not have a specific value for \( C \) (the constant of integration), we can conclude: \[ f(1) = \frac{5}{6} + C \] If \( C \) is assumed to be 0 (as is often the case when evaluating definite integrals), then: \[ f(1) = \frac{5}{6} \] ### Conclusion: Thus, the final answer for \( f(1) \) is: \[ \boxed{\frac{5}{6}} \]

To solve the problem, we need to evaluate the integral given by the function: \[ f(x) = \int \frac{x^2 + x + 1}{x + 1 + \sqrt{x}} \, dx \] We want to find \( f(1) \). ### Step-by-Step Solution: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int 2-(1)/(1+x^(2))-(1)/(sqrt(1+x^(2)))dx , then f is

Let f(x),=int(x^(2))/((1+x^(2))(1+sqrt(1+x^(2))))dx and f(0),=0 then f(1) is

If a function fis such that f(x)=int_(0)^(x)(dx)/(f(x)) and f(1)=sqrt(2), then the value of f(2) is

If int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^(2)))dx=C-2sqrt(1-x^(2))-(2)/(3)sqrt(f(x)) then f(x) is equal to

" If "f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))" and "f(0)=0" Find the value of "f(sqrt(3))-ln(2+sqrt(3))

Let f(x)=int(1)/((1+x^(2))^(3//2))dx and f(0)=0 then f(1)=

If f(x)=int_(a)^(x)[f(x)]^(-1)dxand int_(a)^(1)[f(x)]^(-1)dx=sqrt(2), then f(2)=2( b) f'(2)=(1)/(2)f'(2)=2(d)int_(0)^(1)f(x)dx=sqrt(2)