Home
Class 12
MATHS
If (x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =...

If `(x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =1` then `(dy)/(dx)` may be equals to

A

0

B

`-1`

C

1

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`x+sqrt(1+x^(2)) = (1)/(sqrt(1+y^(2))+y) = sqrt(1+y^(2))-y` ....(1)
`y+sqrt(1+y^(2)) = (1)/(sqrt(1+x^(2))+x) = sqrt(1+x^(2))-x` ....(2)
Adding (1) and (2) we get
`x + y = 0 rArr y - x`
`(dy)/(dx) = -1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sqrt(1-y^2) , then (dy)/(dx)=

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals

If y=sqrt(1+x^(2)) then (dy)/(dx) =

If sqrt(1-x^(2))+sqrt(1-y^(2))=a , then what is (dy)/(dx) equal to?

If y=(1)/(sqrt(x^(2)-x+1)) , then (dy)/(dx)=

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =