Home
Class 12
MATHS
if A = [[cos theta, sin theta],[-sin the...

if `A = [[cos theta, sin theta],[-sin theta, cos theta]]` where `theta = (2pi)/(7)` then `sum_(r=1)^(6) A^(r)` =

A

`[[1,0],[0,1]]`

B

`[[3,0],[0,3]]`

C

`[[-1,0],[0,-1]]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the sum \( \sum_{r=1}^{6} A^r \) where \( A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \) and \( \theta = \frac{2\pi}{7} \). ### Step-by-Step Solution: 1. **Understanding the Matrix A**: The matrix \( A \) represents a rotation matrix. The angle of rotation is \( \theta = \frac{2\pi}{7} \). 2. **Finding Powers of A**: We will first compute \( A^2 \): \[ A^2 = A \cdot A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \] Using matrix multiplication: \[ A^2 = \begin{bmatrix} \cos^2 \theta - \sin^2 \theta & 2\sin \theta \cos \theta \\ -2\sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta \end{bmatrix} \] Recognizing that \( \cos^2 \theta - \sin^2 \theta = \cos(2\theta) \) and \( 2\sin \theta \cos \theta = \sin(2\theta) \): \[ A^2 = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ -\sin(2\theta) & \cos(2\theta) \end{bmatrix} \] 3. **Continuing to Higher Powers**: By continuing this process, we find: \[ A^3 = A^2 \cdot A = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ -\sin(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \] This results in: \[ A^3 = \begin{bmatrix} \cos(3\theta) & \sin(3\theta) \\ -\sin(3\theta) & \cos(3\theta) \end{bmatrix} \] Continuing this way, we find: \[ A^r = \begin{bmatrix} \cos(r\theta) & \sin(r\theta) \\ -\sin(r\theta) & \cos(r\theta) \end{bmatrix} \] 4. **Summing the Powers**: Now we need to compute: \[ \sum_{r=1}^{6} A^r = A + A^2 + A^3 + A^4 + A^5 + A^6 \] This can be expressed as: \[ \sum_{r=1}^{6} A^r = \begin{bmatrix} \sum_{r=1}^{6} \cos(r\theta) & \sum_{r=1}^{6} \sin(r\theta) \\ -\sum_{r=1}^{6} \sin(r\theta) & \sum_{r=1}^{6} \cos(r\theta) \end{bmatrix} \] 5. **Using Properties of Roots of Unity**: The sums \( \sum_{r=0}^{6} \cos(r\theta) \) and \( \sum_{r=0}^{6} \sin(r\theta) \) correspond to the real and imaginary parts of the 7th roots of unity, which sum to zero: \[ \sum_{r=0}^{6} \cos\left(\frac{2\pi r}{7}\right) = 0 \quad \text{and} \quad \sum_{r=0}^{6} \sin\left(\frac{2\pi r}{7}\right) = 0 \] Therefore: \[ \sum_{r=1}^{6} \cos(r\theta) = -1 \quad \text{and} \quad \sum_{r=1}^{6} \sin(r\theta) = 0 \] 6. **Final Result**: Substituting these sums back into our matrix: \[ \sum_{r=1}^{6} A^r = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \] ### Conclusion: Thus, the final result is: \[ \sum_{r=1}^{6} A^r = -I \] where \( I \) is the identity matrix.

To solve the problem, we need to calculate the sum \( \sum_{r=1}^{6} A^r \) where \( A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \) and \( \theta = \frac{2\pi}{7} \). ### Step-by-Step Solution: 1. **Understanding the Matrix A**: The matrix \( A \) represents a rotation matrix. The angle of rotation is \( \theta = \frac{2\pi}{7} \). 2. **Finding Powers of A**: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sin theta|sin theta|,y=cos theta|cos theta|, where 99(pi)/(2)<=theta<=50 pi, then

If [[cos theta,sin theta],[-sin theta,cos theta]], then lim _(n rarr infty )A^(n)/n is (where theta in R )

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

If (cos theta+cos2 theta)+sin2 theta(1+2cos theta)=2sin theta,theta in[-pi,pi] then

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] "then " f (pi/7) is

cos theta-cos3 theta+cos5 theta-cos7 theta=4sin theta sin4 theta cos2 theta

If f(theta)=|sin theta|+|cos theta|,theta in R, then

(cos theta)/(1-sin theta)=(1+cos theta+sin theta)/(1+cos theta-sin theta)

If 2-cos^(2)theta=3sin theta cos theta where sin theta!=cos theta then tan theta=

(sin theta-cos theta+1)/(sin theta+cos theta-1)=(1+sin theta)/(cos theta)