Home
Class 12
MATHS
xdy-ydx = 2x^(3)y(xdy+ydx) if y(1) = 1, ...

`xdy-ydx = 2x^(3)y(xdy+ydx)` if y(1) = 1, then `y(2) +y((1)/(2)) =`

A

`(65)/(8)`

B

`(8)/(65)`

C

`(65)/(sqrt(8))`

D

65

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given by \( x \, dy - y \, dx = 2x^3y(x \, dy + y \, dx) \) with the initial condition \( y(1) = 1 \), we will follow these steps: ### Step 1: Rearranging the Equation We start with the equation: \[ x \, dy - y \, dx = 2x^3y(x \, dy + y \, dx) \] We can rearrange it to isolate the terms involving \( dy \) and \( dx \). ### Step 2: Dividing by \( x^2 \) To simplify, we divide both sides by \( x^2 \): \[ \frac{x \, dy - y \, dx}{x^2} = 2xy \left( \frac{x \, dy + y \, dx}{x^2} \right) \] This simplifies to: \[ \frac{dy}{x} - \frac{y}{x^2} \, dx = 2y \left( \frac{dy}{x} + \frac{y}{x^2} \, dx \right) \] ### Step 3: Recognizing the Form The left-hand side can be recognized as the derivative of \( \frac{y}{x} \): \[ d\left(\frac{y}{x}\right) = 2y \left( \frac{dy}{x} + \frac{y}{x^2} \, dx \right) \] This can be rewritten as: \[ d\left(\frac{y}{x}\right) = 2y \, d\left(\frac{y}{x}\right) \] ### Step 4: Integrating Both Sides Integrating both sides gives us: \[ \frac{y}{x} = 2 \cdot \frac{y^2}{2} + C \] This simplifies to: \[ \frac{y}{x} = y^2 + C \] ### Step 5: Applying the Initial Condition Using the initial condition \( y(1) = 1 \): \[ \frac{1}{1} = 1^2 + C \implies 1 = 1 + C \implies C = 0 \] Thus, we have: \[ \frac{y}{x} = y^2 \] ### Step 6: Solving for \( y \) Rearranging gives us: \[ y^2 - \frac{y}{x} = 0 \implies y(y - \frac{1}{x}) = 0 \] This implies \( y = 0 \) or \( y = \frac{1}{x} \). Since \( y(1) = 1 \), we take: \[ y = \frac{1}{x} \] ### Step 7: Finding \( y(2) \) and \( y\left(\frac{1}{2}\right) \) Now we can find: \[ y(2) = \frac{1}{2}, \quad y\left(\frac{1}{2}\right) = \frac{1}{\frac{1}{2}} = 2 \] ### Step 8: Summing the Values Finally, we compute: \[ y(2) + y\left(\frac{1}{2}\right) = \frac{1}{2} + 2 = \frac{1}{2} + \frac{4}{2} = \frac{5}{2} \] ### Final Answer Thus, the value of \( y(2) + y\left(\frac{1}{2}\right) \) is: \[ \frac{5}{2} \] ---

To solve the differential equation given by \( x \, dy - y \, dx = 2x^3y(x \, dy + y \, dx) \) with the initial condition \( y(1) = 1 \), we will follow these steps: ### Step 1: Rearranging the Equation We start with the equation: \[ x \, dy - y \, dx = 2x^3y(x \, dy + y \, dx) \] We can rearrange it to isolate the terms involving \( dy \) and \( dx \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

xdy-ydx=xy^(2)dx

x^(2)y(2xdy+3ydx)=dy

y ^ (2) (xdy + ydx) + xdy-ydx = 0

For the primitive integral equation ydx+y^(2)dy=xdy;x in R,y>0,y(1)=1 then y(-3) is (a)3(b)2(c)1(d)5

If x^(3)dy+xydx=x^(2)dy+2ydx,y(2)=e then y(-1)=

If xdy=ydx+y^2dy and y(1)=1 , then y(-3) is equal to (A) 1 (B) 5 (C) 4 (D) 3

xdy + 2 ydx = 0 , " when " x=2 , y=1

Solve x^2dy+y^2dx=xy(xdy-ydx)

Let y(x) be a solution of xdy+ydx+y^(2)(xdy-ydx)=0 satisfying y(1)=1. Statement -1 : The range of y(x) has exactly two points. Statement-2 : The constant of integration is zero.

Solve (xdx + yes) / (xdy-ydx) = sqrt ((a ^ (2) -x ^ (2) -y ^ (2)) / (x ^ (2) + y ^ (2)))